tapir documentation
Release 0.x

Adam Warski

Aug 19, 2021

Getting started

Code teaser

Other sttp projects

Table of contents

Goals of the project

Inputs/outputs
Status codes

Custom types
Schema derivation

Content type
Working with JSON

Streaming support
Web sockets
Datatypes integrations
Serving static content
Running as an akka-http server
Running as an http4s server
Running as an http4s server using ZIO
Running as a Finatra server
Running as a Play server
Running as a Vert.X server
Running as an zio-http server
Running using the AWS serverless stack
Server options

Observability
Error handling

431
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42

Logging & debugging e e 68
Usingasansttpclient o e e e e e e e e e e 68
UsingasaPlayclient e e e e e 69
Usingasanhttpdsclient L e 70
Generating OpenAPI documentation L 71
Generating AsyncAPI documentation oL 74
TeStiNg . . . o e e e e e e e e e e e e e e 76
Generate endpoint definitions from an OpenAPI YAML 79
Other INtETPreters v v v vt e et e e e e e e e e e e e e e e e e e e 80
Creating yourown Tapir L e 80
Troubleshooting L e 80
Contributing e e e 81

tapir documentation, Release 0.x

With tapir, you can describe HTTP API endpoints as immutable Scala values. Each endpoint can contain a number of
input parameters, error-output parameters, and normal-output parameters. An endpoint specification can be interpreted
as:

* a server, given the “business logic”: a function, which computes output parameters based on input parameters.
Currently supported:

Akka HTTP Routes/Directives

Http4s HttpRoutes [F]

Finatra http.Controller

Play Route

ZI0 Http Http
aws through Lambda/SAM/Terraform

* aclient, which is a function from input parameters to output parameters. Currently supported:
- sttp
— Play
— Hitpds

 documentation. Currently supported:
— OpenAPI
— AsyncAPI

Tapir is licensed under Apache2, the source code is available on GitHub.

Depending on how you prefer to explore the library, take a look at one of the examples or read on for a more detailed
description of how tapir works!

Tapir is available:
¢ all modules - Scala 2.12 and 2.13 on the JVM

* selected modules (core, http4s server, sttp client, openapi, some js and datatype integrations) - Scala 3 on the
JVM

* selected modules (sttp client, some js and datatype integrations) - Scala 2.12 and 2.13 using Scala.JS.

Getting started 1

https://github.com/softwaremill/tapir

tapir documentation, Release 0.x

2 Getting started

CHAPTER 1

Code teaser

import
import
import
import

sttp.tapir._
sttp.tapir.generic.auto._
sttp.tapir.json.circe._
jo.circe.generic.auto._

type Limit = Int

type AuthToken = String

case class BooksFromYear (genre:
case class Book(title: String)

// Define an endpoint

String, year: Int)

val booksListing: Endpoint|[(BooksFromYear, Limit, AuthToken), String, List[Book],

%Any] =
endpoint
.get
.in(("books"™ / path[String] ("genre") / path[Int] ("year")) .mapTo[BooksFromYear])
.in(query[Limit] ("1limit") .description ("Maximum number of books to retrieve"))

.1in (header [AuthToken] ("X-Auth-Token"))
.errorOut (stringBody)
.out (jsonBody [List [Book]])

// Generate OpenAPI documentation

import sttp.tapir.docs.openapi.OpenAPIDocsInterpreter
import sttp.tapir.openapi.circe.yaml._

val docs = OpenAPIDocsInterprete
println(docs.toYaml)

// Convert to akka-http Route

r () .toOpenAPI (booksListing, "My Bookshop", "1.0")

(continues on next page)

tapir documentation, Release 0.x

(continued from previous page)

import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter
import akka.http.scaladsl.server.Route
import scala.concurrent.Future

def bookListingLogic (bfy: BooksFromYear,
limit: Limit,
at: AuthToken): Future[Either[String, List[Book]]] =
Future.successful (Right (List (Book ("The Sorrows of Young Werther"))))
val booksListingRoute: Route = AkkaHttpServerInterpreter ()
.toRoute (booksListing) ((bookListingLogic _) .tupled)

// Convert to sttp Request

import sttp.tapir.client.sttp.SttpClientInterpreter
import sttp.client3._

val booksListingRequest: Request [DecodeResult [Either[String, List[Book]]], Any] =
SttpClientInterpreter ()
.toRequest (booksListing, Some (uri"http://localhost:8080"))
.apply ((BooksFromYear ("SF", 2016), 20, "xyz-abc-123"))

4 Chapter 1. Code teaser

CHAPTER 2

Other sttp projects

sttp is a family of Scala HTTP-related projects, and currently includes:
* sttp client: the Scala HTTP client you always wanted!
e sttp tapir: this project

¢ sttp model: simple HTTP model classes (used by client & tapir)

https://github.com/softwaremill/sttp
https://github.com/softwaremill/sttp-model

tapir documentation, Release 0.x

6 Chapter 2. Other sttp projects

CHAPTER 3

Sponsors

Development and maintenance of sttp tapir is sponsored by SoftwareMill, a software development and consulting
company. We help clients scale their business through software. Our areas of expertise include backends, distributed
systems, blockchain, machine learning and data analytics.

J Il sOFTWAREMILL

https://softwaremill.com
https://softwaremill.com

tapir documentation, Release 0.x

8 Chapter 3. Sponsors

CHAPTER 4

Table of contents

4.1 Quickstart

To use tapir, add the following dependency to your project:

o

"com.softwaremill.sttp.tapir" %% "tapir-core" % "0.19.0-Mo6"

This will import only the core classes needed to create endpoint descriptions. To generate a server or a client, you will
need to add further dependencies.

Many of tapir functionalities come as builder methods in the main package, hence it’s easiest to work with tapir if you
import the main package entirely, i.e.:

’import sttp.tapir._

If you don’t have it already, you’ll also need partial unification enabled in the compiler (alternatively, you’ll need to
manually provide type arguments in some cases). In sbt, this is:

scalacOptions += "-Ypartial-unification"

Finally, type:

endpoint.

and see where auto-complete gets you!

4.2 Examples

The examples sub-project contains a number of runnable tapir usage examples:
» Hello world server, using akka-http

* Hello world server, using http4s

https://github.com/softwaremill/tapir/tree/master/examples/src/main/scala/sttp/tapir/examples
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/HelloWorldAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/HelloWorldHttp4sServer.scala

tapir documentation, Release 0.x

» Hello world server, using ZIO http

 Separate error & success outputs, using akka-http

* Multiple endpoints, exposing OpenAPl/Swagger documentation, using akka-http
» Multiple endpoints, exposing OpenAPI/Swagger documentation, using http4s

* Multiple endpoints, with the description coupled with server logic, using akka-http
* Reporting errors in a custom format when a query/path/.. parameter cannot be decoded
* Using custom types in endpoint descriptions

* Multipart form upload, using akka-http

* Basic Authentication, using akka-http

e Partial server logic (authentication), using akka-http

* Authorization using Github (OAuth2) with http4s

* Books example

* Books example with semiauto derivation

e 710 example, using http4s

* ZIO example with environment, using http4s

* 710 partial server logic example, using http4s

* ZIO example using ZIO http

 Streaming body, using akka-http

e Streaming body, using http4s + fs2

* Web sockets server, using akka-http

* Web sockets client, using akka-http

* Web sockets server, using http4s

¢ Client, using http4s

* mockserver integration

* OpenAPI extensions

¢ Prometheus metrics

4.2.1 Other examples

To see an example project using Tapir, check out this Todo-Backend using tapir and http4s.

For a quick start using http4s and tapir you can use a gitter8 template. A new project can be created using: sbt new
https://codeberg.org/wegtam/httpds-tapir.g8.git

4.2.2 Blogs, articles

* Designing tapir’s WebSockets support
* Three easy endpoints

* tAPIr’s Endpoint meets ZIO’s 10

10 Chapter 4. Table of contents

https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/HelloWorldZioHttpServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ErrorOutputsAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/MultipleEndpointsDocumentationAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/MultipleEndpointsDocumentationHttp4sServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/MultipleServerEndpointsAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/CustomErrorsOnDecodeFailureAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/EndpointWithCustomTypes.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/MultipartFormUploadAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/BasicAuthenticationAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/PartialServerLogicAkka.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/OAuth2GithubHttp4sServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/BooksExample.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/BooksExampleSemiauto.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ZioExampleHttp4sServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ZioEnvExampleHttp4sServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ZioPartialServerLogicHttp4s.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ZioExampleZioHttpServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/StreamingAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/StreamingHttp4sFs2Server.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/WebSocketAkkaServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/WebSocketAkkaClient.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/WebSocketHttp4sServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/Http4sClientExample.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/MockServerExample.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/OpenapiExtensions.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/PrometheusMetricsExample.scala
https://github.com/hejfelix/tapir-http4s-todo-mvc
https://codeberg.org/wegtam/http4s-tapir.g8
https://blog.softwaremill.com/designing-tapirs-websockets-support-ff1573166368
https://blog.softwaremill.com/three-easy-endpoints-a6cbd52b0a6e
https://blog.softwaremill.com/tapirs-endpoint-meets-zio-s-io-3278099c5e10

tapir documentation, Release 0.x

* Describe, then interpret: HTTP endpoints using tapir

* Functional pancakes

4.2.3 Videos

* ScalaWorld 2019: Designing Programmer-Friendly APIs

4.3 Goals of the project

* programmer-friendly, human-comprehensible types, that you are not afraid to write down
* (also inferencable by IntelliJ)

* discoverable API through standard auto-complete

e separate “business logic” from endpoint definition & documentation

* as simple as possible to generate a server, client & docs

* based purely on case class-based, immutable and reusable data structures

* first-class OpenAPI support. Provide as much or as little detail as needed.

* reasonably type safe: only, and as much types to safely generate the server/client/docs

4.3.1 Similar projects

There’s a number of similar projects from which tapir draws inspiration:
* endpoints
* typedapi
e rho
* typed-schema

e guardrail

4.4 Basics

An endpoint is represented as a value of type Endpoint [I, E, O, S], where:

* T is the type of the input parameters

* E is the type of the error-output parameters

* Ois the type of the output parameters

* S is the type of streams that are used by the endpoint’s inputs/outputs
Input/output parameters (I, E and O) can be:

* of type Unit, when there’s no input/ouput of the given type

* asingle type

* atuple of types

4.3. Goals of the project 11

https://blog.softwaremill.com/describe-then-interpret-http-endpoints-using-tapir-ac139ba565b0
https://blog.softwaremill.com/functional-pancakes-cf70023f0dcb
https://www.youtube.com/watch?v=I3loMuHnYqw
https://github.com/julienrf/endpoints
https://github.com/pheymann/typedapi
https://github.com/http4s/rho
https://github.com/TinkoffCreditSystems/typed-schema
https://github.com/twilio/guardrail

tapir documentation, Release 0.x

Hence, an empty, initial endpoint (tapir . endpoint), with no inputs and no outputs, from which all other endpoints
are derived has the type:

import sttp.tapir._

val endpoint: Endpoint [Unit, Unit, Unit, Any] = ?27?°?

An endpoint which accepts two parameters of types UUID and Int, upon error returns a St ring, and on normal
completion returns a User, would have the type:

import sttp.tapir._

val userEndpoint: Endpoint[(UUID, Int), String, User, Any] = 2?7

You can think of an endpoint as a function, which takes input parameters of type I and returns a result of type
Either[E, O], where inputs or outputs can contain streaming bodies of type S.

4.4.1 Infallible endpoints

Note that the empty endpoint description maps no values to either error and success outputs, however errors are still
represented and allowed to occur. If you would prefer to use an endpoint description, where errors can not happen, use
infallibleEndpoint: Endpoint[Unit, Nothing, Unit, Nothing]. This might be useful when
interpreting endpoints as a client.

4.4.2 Defining an endpoint

The description of an endpoint is an immutable case class, which includes a number of methods:

* the name, description, etc. methods allow modifying the endpoint information, which will then be in-
cluded in the endpoint documentation

* the get, post etc. methods specify the HTTP method which the endpoint should support
e the in, errorOut and out methods allow adding a new input/output parameter

* mapIn, mapInTo, ... methods allow mapping the current input/output parameters to another value or to a
case class

An important note on mapping: in tapir, all mappings are bi-directional. That’s because each mapping can be used to
generate a server or a client, as well as in many cases can be used both for input and for output.

4.4.3 Next

Read on about describing endpoint inputs/outputs.

4.5 Inputs/outputs

An input is described by an instance of the EndpointInput trait, and an output by an instance of the
EndpointOutput trait. Some inputs can be used both as inputs and outputs; then, they additionally implement
the Endpoint IO trait.

Each input or output can yield/accept a value (but doesn’t have to).

12 Chapter 4. Table of contents

tapir documentation, Release 0.x

For example, query [Int] ("age"): EndpointInput [Int] describesan input, which isthe age parameter
from the URI’s query, and which should be coded (using the string-to-integer codec) as an Int.

The tapir package contains a number of convenience methods to define an input or an output for an endpoint. For
inputs, these are:

e path[T], which captures a path segment as an input parameter of type T

* any string, which will be implicitly converted to a fixed path segment. Path segments can be combined with the
/ method, and don’t map to any values (have type EndpointInput [Unit])

* paths, which maps to the whole remaining path asa List [String]

* query[T] (name) captures a query parameter with the given name

* queryParams captures all query parameters, represented as QueryParams

* cookie[T] (name) captures a cookie from the Cookie header with the given name

* extractFromRequest extracts a value from the request. This input is only used by server interpreters,
ignored by documentation interpreters. Client interpreters ignore the provided value. It can also be used to
access the original request through the underlying: Any field.

For both inputs/outputs:
* header[T] (name) captures a header with the given name
* headers captures all headers, represented as List [Header]
* cookies captures cookies from the Cookie header and represents them as List [Cookie]
* setCookie (name) captures the value & metadata of the a Set -Cookie header with a matching name
* setCookies captures cookies from the Set —-Cookie header and represents them as List [SetCookie]

e stringBody, plainBody[T], JjsonBody[T], rawBinaryBody[R], binaryBody[R, T],
formBody [T], multipartBody [T] captures the body

* streamBody [S] captures the body as a stream: only a client/server interpreter supporting streams of type S
can be used with such an endpoint

For outputs:
* statusCode maps to the status code of the response

* statusCode (code) maps to a fixed status code of the response

4.5.1 Combining inputs and outputs

Endpoint inputs/outputs can be combined in two ways. However they are combined, the values they represent always
accumulate into tuples of values.

First, inputs/outputs can be combined using the . and method. Such a combination results in an input/output, which
maps to a tuple of the given types. This combination can be assigned to a value and re-used in multiple endpoints. As
all other values in tapir, endpoint input/output descriptions are immutable. For example, an input specifying two query
parameters, start (mandatory) and 1imit (optional) can be written down as:

import sttp.tapir._

import sttp.tapir.generic.auto._
import sttp.tapir.json.circe._
import io.circe.generic.auto._
import java.util.UUID

(continues on next page)

4.5. Inputs/outputs 13

tapir documentation, Release 0.x

(continued from previous page)

case class User (name: String)

val paging: EndpointInput [(UUID, Option[Int])] =
query [UUID] ("start") .and (query[Option[Int]] ("1limit"))

// we can now use the value in multiple endpoints, e.g.:
val listUsersEndpoint: Endpoint[(UUID, Option[Int]), Unit, List[User], Any] =
endpoint.in("user" / "list").in(paging) .out (jsonBody[List [User]])

Second, inputs can be combined by calling the in, out and errorOut methods on Endpoint multiple times. Each
time such a method is invoked, it extends the list of inputs/outputs. This can be useful to separate different groups of
parameters, but also to define template-endpoints, which can then be further specialized. For example, we can define
a base endpoint for our API, where all paths always start with /api/v1. 0, and errors are always returned as a json:

import sttp.tapir._

import sttp.tapir.generic.auto._
import sttp.tapir.json.circe._
import io.circe.generic.auto._

case class ErrorInfo (message: String)

val baseEndpoint: Endpoint [Unit, ErrorInfo, Unit, Any] =
endpoint.in("api" / "v1.0").errorOut (jsonBody[ErrorInfo])

Thanks to the fact that inputs/outputs accumulate, we can use the base endpoint to define more inputs, for example:

case class Status (uptime: Long)

val statusEndpoint: Endpoint[Unit, ErrorInfo, Status, Any] =
baseEndpoint.in("status") .out (jsonBody[Status])

The above endpoint will correspond to the api/v1.0/status path.

4.5.2 Mapping over input/output values
Inputs/outputs can also be mapped over. As noted before, all mappings are bi-directional, so that they can be used
both when interpreting an endpoint as a server, and as a client, as well as both in input and output contexts.

There’s a couple of ways to map over an input/output. First, there’s the map [IT] (f: I => II) (g: II =>
I) method, which accepts functions which provide the mapping in both directions. For example:

import sttp.tapir._
import java.util.UUID

case class Paging (from: UUID, limit: Option[Int])
val paging: EndpointInput [Paging] =

query [UUID] ("start") .and(query[Option[Int]] ("1imit"))
.map (input => Paging(input._1, input._2)) (paging => (paging.from, paging.limit))

Next, you can use mapDecode [II] (f: I => DecodeResult[II]) (g: II => I), to handle cases
where decoding (mapping a low-level value to a higher-value one) can fail. There’s a couple of failure reasons,
captured by the alternatives of the DecodeResult trait.

Mappings can also be done given an Mapping [I, II] instance. More on that in the secion on codecs.

14 Chapter 4. Table of contents

codecs

tapir documentation, Release 0.x

Creating a mapping between a tuple and a case class is a common operation, hence there’s also a
mapTo [CaseClass] method, which automatically provides the functions to construct/deconstruct the case class:

val paging: EndpointInput [Paging] =
query [UUID] ("start") .and (query[Option[Int]] ("1limit"))
.mapTo [Paging]

Mapping methods can also be called on an endpoint (which is useful if inputs/outputs are accumulated, for example).
The Endpoint .mapIn, Endpoint.mapInTo etc. have the same signatures are the ones above.

4.5.3 Describing input/output values using annotations

Inputs and outputs can also be built for case classes using annotations. For example, for the case class User

import sttp.tapir.EndpointIO.annotations._

case class User (
@query
name: String,
@cookie
sessionId: Long

endpoint input can be generated using macro Endpoint Input .derived [User] which is equivalent to

import sttp.tapir._

val userInput: EndpointInput [User] =
query [String] ("user") .and(cookie[Long] ("sessionId")) .mapTo[User]

Similarly, endpoint outputs can be derived using EndpointOutput .derived[...].

Following annotations are available in package sttp.tapir.annotations for describing both input and output
values:

* Qheader captures a header with the same name as name of annotated field in a case class. This annotation
can also be used with optional parameter @header ("headerName") in order to capture a header with name
"headerName" if a name of header is different from name of annotated field in a case class

* @headers captures all headers. Can only be applied to fields represented as List [Header]
* @cookies captures all cookies. Can only be applied to fields represented as List [Cookie]

* @jsonbody captures JSON body of request or response. Can only be applied to field if there is implicit JSON
Codec instance from St ring to target type

* @xmlbody captures XML body of request or response. Also requires implicit XML Codec instance from
String to target type

Following annotations are only available for describing input values:

* @query captures a query parameter with the same name as name of annotated field in a case class. The same
as annotation @header it has optional parameter to specify alternative name for query parameter

* @params captures all query parameters. Can only be applied to fields represented as QueryParams

* @Qcookie captures a cookie with the same name as name of annotated field in a case class. The same as
annotation @header it has optional parameter to specify alternative name for cookie

* @apikey wraps any other input and designates it as an API key. Can only be used with another annotations

4.5. Inputs/outputs 15

tapir documentation, Release 0.x

* @basic extracts data from the Authorization header. Can only be applied for field represented as
UsernamePassword

* @bearer extracts data from the Authorization header removing the Bearer prefix.

* @path captures a path segment. Can only be applied to field of a case class if this case class is annotated by
annotation @endpoint Input. For example,

import sttp.tapir.EndpointIO.annotations._

@endpointInput ("books/{year}/{genre}")
case class Book (

@path

genre: String,
@path

year: Int,
@query

name: String

Annotation @endpoint Input specifies endpoint path. In order to capture a segment of the path, it must be sur-
rounded in curly braces.

Following annotations are only available for describing output values:

* @setCookie sends value in header Set-Cookie. The same as annotation @header it has op-
tional parameter to specify alternative name for cookie. Can only be applied for field represented as
CookieValueWithMeta

* @setCookies sends several Set-Cookie headers. Can only be applied for field represented as
List [Cookie]

* @statusCode sets status code for response. Can only be applied for field represented as StatusCode

4.5.4 Path matching

By default (as with all other types of inputs), if no path input/path segments are defined, any path will match.

If any path input/path segment is defined, the path must match exactly - any remaining path segments will cause the
endpoint not to match the request. For example, endpoint.in ("api") will match /api, /api/, but won’t
match /, /api/users.

To match only the root path, use an empty string: endpoint.in ("") will match http://server.com/ and
http://server.com.

To match a path prefix, first define inputs which match the path prefix, and then capture any remaining part using
paths,e.g.: endpoint.in("api" / "download").in (paths)".

4.5.5 Next

Read on about status codes.

16 Chapter 4. Table of contents

tapir documentation, Release 0.x

4.6 Status codes

4.6.1 Arbitrary status codes

To provide a (varying) status code of a server response, use the statusCode output, which maps to a value of type
sttp.model.StatusCode. The companion object contains known status codes as constants. This type of output
is used only when interpreting the endpoint as a server. If your endpoint returns varying status codes which you would
like to have listed in documentation use statusCode.description(codel, "codel description").
description(code2, "code2 description") output.

4.6.2 Fixed status code

A fixed status code can be specified using the statusCode (code) output.

4.6.3 Different outputs for status codes

It is also possible to specify how status codes correspond with different outputs. All mappings should have a common
supertype, which is also the type of the output. These mappings are used to determine the status code when interpreting
an endpoint as a server, as well as when generating documentation and to deserialise client responses to the appropriate
type, basing on the status code.

For example, below is a specification for an endpoint where the error output is a sealed trait ErrorInfo; such a
specification can then be refined and reused for other endpoints:

import sttp.tapir._

import sttp.tapir.json.circe._
import sttp.tapir.generic.auto.
import sttp.model.StatusCode
import io.circe.generic.auto._

sealed trait ErrorInfo

case class NotFound (what: String) extends ErrorInfo

case class Unauthorized(realm: String) extends ErrorInfo
case class Unknown (code: Int, msg: String) extends ErrorInfo
case object NoContent extends ErrorInfo

// here we are defining an error output, but the same can be done for regular outputs
val baseEndpoint = endpoint.errorOut (
oneOf [ExrrorInfo] (
oneOfMapping (StatusCode.NotFound, jsonBody[NotFound].description ("not found")),
oneOfMapping (StatusCode.Unauthorized, JjsonBody|[Unauthorized].description (
—"unauthorized")),
oneOfMapping (StatusCode.NoContent, emptyOutputAs (NoContent)),
oneOfDefaultMapping (jsonBody [Unknown] .description ("unknown"))

Each mapping, defined using the oneOfMapping method is a case class, containing the output description as well
as the status code. Moreover, default mappings can be defined using oneOfDefaultMapping:

« for servers, the default status code for error outputs is 400, and for normal outputs 200 (unless a statusCode
is used in the nested output)

* for clients, a default mapping is a catch-all.

4.6. Status codes 17

tapir documentation, Release 0.x

Both oneOfMapping and oneOfDefaultMapping return a value of type OneOfMapping. A list of these
values can be dynamically assembled (e.g. using a default set of cases, plus endpoint-specific mappings), and provided
to oneOf.

4.6.4 One-of-mapping and type erasure

Type erasure may prevent a one-of-mapping from working properly. The following example will fail at compile time
because Right [NotFound] and Right [BadRequest] will become Right [Any]:

import sttp.tapir._

import sttp.tapir.json.circe._
import sttp.tapir.generic.auto.
import sttp.model.StatusCode
import io.circe.generic.auto._

case class ServerError (what: String)

sealed trait UserError
case class BadRequest (what: String) extends UserError
case class NotFound (what: String) extends UserError

val baseEndpoint = endpoint.erroroOut (
oneOf [Either [ServerError, UserError]] (
oneOfMapping (StatusCode.NotFound, jsonBody[Right[ServerError, NotFound]].
—~description ("not found")),
oneOfMapping (StatusCode.BadRequest, jsonBody[Right [ServerError, BadRequest]].
—description ("unauthorized")),
oneOfMapping (StatusCode.InternalServerError, jsonBody|[Left[ServerError,
—UserError]] .description ("unauthorized")),
)
)
// error: Constructing oneOfMapping of type scala.util.Right [repl.MdocSession.App.
—ServerError, repl.MdocSession.App.NotFound] 1is not allowed because of type erasure._,
—Using a runtime-class—-based check it isn't possible to verify that the input_
—matches the desired class. Please use oneOfMappingClassMatcher,
—oneOfMappingValueMatcher or oneOfMappingFromMatchType instead

// oneOfMappingValueMatcher (StatusCode.NotFound, jsonBody[Right|[ServerError,
—NotFound]] .description ("not found")) {
// .

// error: Constructing oneOfMapping of type scala.util.Right[repl.MdocSession.App.
—ServerError, repl.MdocSession.App.BadRequest] is not allowed because of type erasure.
— Using a runtime-class—-based check it isn't possible to verify that the input_
—matches the desired class. Please use oneOfMappingClassMatcher,
—oneOfMappingValueMatcher or oneOfMappingFromMatchType instead

// oneOfMappingValueMatcher (StatusCode.BadRequest, jsonBody[Right[ServerError,
—BadRequest]].description ("unauthorized”")) {
// ~

// error: Constructing oneOfMapping of type scala.util.Left[repl.MdocSession.App.
—ServerError, repl.MdocSession.App.UserError] 1s not allowed because of type erasure.
—Using a runtime-class-based check it isn't possible to verify that the input_
—matches the desired class. Please use oneOfMappingClassMatcher,
—oneOfMappingValueMatcher or oneOfMappingFromMatchType instead

// oneOfMappingValueMatcher (StatusCode.InternalServerError,

— jsonBody [Left [ServerError, UserError]].description("unauthorized")) {

/7 ”

The solution is therefore to handwrite a function checking that a value (of type Any) is of the correct type:

18 Chapter 4. Table of contents

tapir documentation, Release 0.x

val baseEndpoint = endpoint.errorOut (
oneOf [Either [ServerError, UserError]] (
oneOfMappingValueMatcher (StatusCode.NotFound, jsonBody[Right[ServerError,
—NotFound]] .description ("not found")) {
case Right (NotFound(_)) => true
s
oneOfMappingValueMatcher (StatusCode.BadRequest, JjsonBody|[Right[ServerError,
—BadRequest]].description ("unauthorized")) {
case Right (BadRequest (_)) => true
}I
oneOfMappingValueMatcher (StatusCode.InternalServerError,
—JjsonBody [Left [ServerError, UserError]].description ("unauthorized")) {
case Left (ServerError(_)) => true

Of course, you could use oneOfMappingValueMatcher to do runtime filtering for other purpose than solving
type erasure.

In the case of solving type erasure, writing by hand partial function to match value against composition of case class
and sealed trait can be repetitive. To make that more easy, we provide an experimental typeclass - MatchType - so
you can automatically derive that partial function:

import sttp.tapir.typelevel.MatchType

val baseEndpoint = endpoint.errorOut (
oneOf [Either [ServerError, UserError]] (

oneOfMappingFromMatchType (StatusCode.NotFound, jsonBody|[Right[ServerError,
—NotFound]] .description("not found")),

oneOfMappingFromMatchType (StatusCode.BadRequest, JjsonBody[Right[ServerError,
—~BadRequest]] .description ("unauthorized")),

oneOfMappingFromMatchType (StatusCode.InternalServerError,
—JjsonBody [Left [ServerError, UserError]].description ("unauthorized"))

)

4.6.5 Server interpreters

Unless specified otherwise, successful responses are returned with the 200 OK status code, and errors with 400 Bad
Request. For exception and decode failure handling, see error handling.

4.6.6 Next

Read on about codecs.

4.7 Codecs

A Codec[L, H, CF] isa bi-directional mapping between low-level values of type L and high-level values of type
H. Low level values are formatted as CF. A codec also contains the schema of the high-level value, which is used for
validation and documentation.

4.7. Codecs 19

codecs

tapir documentation, Release 0.x

There are built-in codecs for most common types such as String, Int etc. Codecs are usually defined as implicit
values and resolved implicitly when they are referenced. However, they can also be provided explicitly as needed.

For example, a query [Int] ("quantity") specifies an input parameter which corresponds to the quantity
query parameter and will be mapped as an Int. A query input requires a codec, where the low-level value is a
List [String] (representing potentially 0, one, or multiple parameters with the given name in the URL). Hence, an
implicit Codec [List [String], Int, TextPlain] value will be looked up when using the query method
(which is defined in the sttp.tapir package).

In this example, the codec will verify that there’s a single query parameter with the given name, and parse it as an
integer. If any of this fails, a failure will be reported.

In a server setting, if the value cannot be parsed as an int, a decoding failure is reported, and the endpoint won’t match
the request, ora 400 Bad Request response is returned (depending on configuration).

4.7.1 Optional and multiple parameters

Some inputs/outputs allow optional, or multiple parameters:
* path segments are always required
* query and header values can be optional or multiple (repeated query parameters/headers)
* bodies can be optional, but not multiple

In general, optional parameters are represented as Option values, and multiple parameters as List values. For
example, header [Option[String]] ("X-Auth-Token") describes an optional header. An input described
as query [List [String]] ("color") allows multiple occurrences of the color query parameter, with all
values gathered into a list.

4.7.2 Schemas

A codec contains a schema, which describes the high-level type. The schema is used when generating documentation
and enforcing validation rules.

Schema consists of:

* the schema type, which is one of the values defined in SchemaType, such as SString, SBinary, SArray
or SProduct/SCoproduct (for ADTs). This is the shape of the encoded value - as it is sent over the network

* meta-data: value optionality, description, example, default value and low-level format name
* validation rules
For primitive types, the schema values are built-in, and defined in the Schema companion object.

The schema is left unchanged when mapping a codec, or an input/output, as the underlying representation of the value
doesn’t change. However, schemas can be changed for individual inputs/outputs using the .schema (Schema)
method.

Schemas are typically referenced indirectly through codecs, and are specified when the codec is created.

As part of deriving a codec, to support a custom or complex type (e.g. for json mapping), schemas can be looked up
implicitly and derived as well. See custom types for more details.

4.7.3 Codec format

Codecs contain an additional type parameter, which specifies the codec format. Each format corresponds to a media
type, which describes the low-level format of the raw value (to which the codec encodes). Some built-in formats

20 Chapter 4. Table of contents

tapir documentation, Release 0.x

include text/plain, application/json and multipart/form-data. Custom formats can be added by
creating an implementation of the sttp.tapir.CodecFormat trait.

Thanks to codecs being parametrised by codec formats, it is possible to have a Codec [String, MyCaseClass,
TextPlain] which specifies how to serialize a case class to plain text, and a different Codec[String,
MyCaseClass, Json], which specifies how to serialize a case class to json. Both can be implicitly available
without implicit resolution conflicts.

Different codec formats can be used in different contexts. When defining a path, query or header parameter, only a
codec with the TextPlain media type can be used. However, for bodies, any media type is allowed. For example,
the input/output described by jsonBody [T] requires a json codec.

4.7.4 Next

Read on about custom types.

4.8 Custom types

To support a custom type, you’ll need to provide an implicit Codec for that type.

This can be done by writing a codec from scratch, mapping over an existing codec, or automatically deriving one.
Which of these approaches can be taken, depends on the context in which the codec will be used.

4.8.1 Creating an implicit codec by hand
To create a custom codec, you can either directly implement the Codec trait, which requires to provide the following
information:

* encode and rawDecode methods

¢ schema (for documentation and validation)

¢ codec format (text/plain, application/json etc.)

This might be quite a lot of work, that’s why it’s usually easier to map over an existing codec. To do that, you’ll need
to provide two mappings:

¢ a decode method which decodes the lower-level type into the custom type, optionally reporting decode failures
(the return type is a DecodeResult)

* an encode method which encodes the custom type into the lower-level type

For example, to support a custom id type:

import scala.util._

class MyId private (id: String) {
override def toString(): String = id
}
object MyId {
def parse(id: String): Try[MyId] = {
Success (new MyId(id))
}

4.8. Custom types 21

tapir documentation, Release 0.x

import sttp.tapir._
import sttp.tapir.CodecFormat.TextPlain

def decode(s: String): DecodeResult [MyId] = MyId.parse(s) match {
case Success (v) => DecodeResult.Value (v)
case Failure(f) => DecodeResult.Error(s, f)

}
def encode (id: MyId): String = id.toString

implicit val myIdCodec: Codec[String, MyId, TextPlain] =
Codec.string.mapDecode (decode) (encode)

Or, using the type alias for codecs in the TextPlain format and St ring as the raw value:

import sttp.tapir.Codec.PlainCodec

implicit val myIdCodec: PlainCodec[MyId] = Codec.string.mapDecode (decode) (encode)

Note: Note that inputs/outputs can also be mapped over. In some cases, it’s enough to create an input/output
corresponding to one of the existing types, and then map over them. However, if you have a type that’s used multiple
times, it’s usually better to define a codec for that type.

Then, you can use the new codec e.g. to obtain an id from a query parameter, or a path segment:

endpoint.in (query [MyId] ("myId"))
// or
endpoint.in(path[MyId])

4.8.2 Automatically deriving codecs

In some cases, codecs can be automatically derived:
* for supported json libraries
* for urlencoded and multipart forms
Automatic codec derivation usually requires other implicits, such as:
* json encoders/decoders from the json library
¢ codecs for individual form fields
* schema of the custom type, through the Schema [T] implicits (see the next section)

Note the derivation of e.g. circe json encoders/decoders and tapir schemas are separate processes, and must be config-
ured separately.

4.8.3 Next

Read on about deriving schemas.

22 Chapter 4. Table of contents

json
forms

tapir documentation, Release 0.x

4.9 Schema derivation

Implicit schemas for basic types (St ring, Int, etc.), and their collections (Option, List, Array etc.) are defined
out-of-the box. They don’t contain any meta-data, such as descriptions or example values.

For case classes, Schema [__] values can be derived automatically using Magnolia, given that schemas are defined
for all the case class’s fields.

There are two policies of custom type derivation are available:
¢ automatic derivation

¢ semi automatic derivation

4.9.1 Automatic derivation

Case classes, traits and their children are recursively derived by Magnolia.

Importing sttp.tapir.generic.auto._ (or extending the SchemaDerivation trait) enables fully auto-
matic derivation for Schema:

import sttp.tapir.Schema
import sttp.tapir.generic.auto._

case class Parent (child: Child)
case class Child(value: String)

// implicit schema used by codecs
implicitly[Schema[Parent]]

If you have a case class which contains some non-standard types (other than strings, number, other case classes,
collections), you only need to provide implicit schemas for them. Using these, the rest will be derived automatically.

Note that when using datatypes integrations, respective codecs must also be imported to enable the derivation, e.g. for
newtype you’ll have to add import sttp.tapir.codec.newtype._ orextend TapirCodecNewType.

4.9.2 Semi-automatic derivation

Semi-automatic derivation can be done using Schema.derived[T].

It only derives selected type T. However, derivation is not recursive: schemas must be explicitly defined for every child
type.

This mode is easier to debug and helps to avoid issues encountered by automatic mode (wrong schemas for value
classes or custom types):

import sttp.tapir.Schema

case class Parent (child: Child)
case class Child(value: String)

implicit lazy val sChild: Schema[Child] = Schema.derived
implicit lazy val sParent: Schema[Parent] = Schema.derived

Note that while schemas for regular types can be safely defined as vals, in case of recursive values, the schema values
must be lazy wvals.

4.9. Schema derivation 23

https://propensive.com/opensource/magnolia/
integrations.md#newtype-integration

tapir documentation, Release 0.x

4.9.3 Derivation for recursive types in Scala3

In Scala3, any schemas for recursive types need to be provided as typed implicit def (not a given)! For
example:

case class RecursiveTest (data: List[RecursiveTest])
object RecursiveTest {
implicit def flSchema: Schema[RecursiveTest] = Schema.derived[RecursiveTest]

The implicit doesn’t have to be defined in the companion object, just anywhere in scope. This applies to cases where
the schema is looked up implicitly, e.g. for jsonBody.

4.9.4 Configuring derivation

It is possible to configure Magnolia’s automatic derivation to use snake_case, kebab—-case or a custom field
naming policy, by providing an implicit sttp.tapir.generic.Configuration value. This influences how
the low-level representation is described in documentation:

import sttp.tapir.generic.Configuration

implicit val customConfiguration: Configuration =
Configuration.default.withSnakeCaseMemberNames

4.9.5 Manually providing schemas

Alternatively, Schema [__] values can be defined by hand, either for whole case classes, or only for some of its fields.
For example, here we state that the schema for MyCustomType is a String:

import sttp.tapir._

case class MyCustomType ()

implicit val schemaForMyCustomType: Schema[MyCustomType] = Schema.string

// or, 1if the low-level representation is e.g. a number

implicit val anotherSchemaForMyCustomType: Schema[MyCustomType] = Schema (SchemaType.
—SInteger())

4.9.6 Sealed traits / coproducts
Schema derivation for coproduct types (sealed trait hierarchies) is supported as well. By default, such hierarchies will
be represented as a coproduct which contains a list of child schemas, without any discriminator field.

A discriminator field can be specified for coproducts by providing it in the configuration; this will be only used during
automatic and semi-automatic derivation:

import sttp.tapir.generic.Configuration

implicit val customConfiguration: Configuration =
Configuration.default.withDiscriminator ("who_am 1i")

Alternatively, derived schemas can be customised (see below), and a discriminator can be added by calling the
SchemaType.SCoproduct.addDiscriminatorField (name, schema, maping) method.

24 Chapter 4. Table of contents

tapir documentation, Release 0.x

Finally, if the discriminator is a field that’s defined on the base trait (and hence in each implementation), the schemas
can be specified using Schema.oneOfUsingField, for example (this will also generate the appropriate map-

pings):

sealed trait Entity {
def kind: String

}

case class Person (firstName:String, lastName:String) extends Entity ({
def kind: String = "person"

}

case class Organization (name: String) extends Entity {
def kind: String = "org"

import sttp.tapir._

val sPerson = Schema.derived[Person]
val sOrganization = Schema.derived[Organization]
implicit val sEntity: Schema[Entity] =
Schema.oneOfUsingField[Entity, String] (_.kind, _.toString) ("person" -> sPerson,
—"org" -> sOrganization)

4.9.7 Customising derived schemas
Using annotations
In some cases, it might be desirable to customise the derived schemas, e.g. to add a description to a particular field of
a case class. One way the automatic & semi-automatic derivation can be customised is using annotations:
* @encodedName sets name for case class’s field which is used in the encoded form (and also in documentation)
* @description sets description for the whole case class or its field
* @default sets default value for a case class field

* @encodedExample sets example value for a case class field which is used in the documentation in the en-
coded form

* @format sets the format for a case class field
* @deprecated marks a case class’s field as deprecated

These annotations will adjust schemas, after they are looked up using the normal implicit mechanisms.

Using implicits
If the target type isn’t accessible or can’t be modified, schemas can be customized by looking up an implicit instance
of the Derived[Schema [T]] type, modifying the value, and assigning it to an implicit schema.

When such an implicit Schema [T] is in scope will have higher priority than the built-in low-priority conversion from
Derived[Schema[T]] to Schema[T].

Schemas for products/coproducts (case classes and case class families) can be traversed and modified using .modify
method. To traverse collections, use .each.

For example:

4.9. Schema derivation 25

tapir documentation, Release 0.x

import sttp.tapir._
import sttp.tapir.generic.auto._
import sttp.tapir.generic.Derived

case class Basket (fruits: List [FruitAmount])
case class FruitAmount (fruit: String, amount: Int)

implicit val customBasketSchema: Schema[Basket] = implicitly[Derived|[Schema [Basket]]].
—value
.modify(_.fruits.each.amount) (_.description ("How many fruits?"))

There is also an unsafe variant of this method, but it should be avoided in most cases. The “unsafe” prefix comes from
the fact that the method takes a list of strings, which represent fields, and the correctness of this specification is not
checked.

Non-standard collections can be unwrapped in the modification path by providing an implicit value of
ModifyFunctor.

Using value classes/tagged types

An alternative to customising schemas for case class fields of primitive type (e.g. Ints), is creating a unique type.
As schema lookup is type-driven, if a schema for a such type is provided as an implicit value, it will be used during
automatic or semi-automatic schema derivation. Such schemas can have custom meta-data, including description,
validation, etc.

To introduce unique types for primitive values, which don’t have a runtime overhead, you can use value classes or type
tagging.

For example, to support an integer wrapped in a value type in a json body, we need to provide Circe encoders and
decoders (if that’s the json library that we are using), schema information with validator:

import sttp.tapir._

import sttp.tapir.generic.auto._
import sttp.tapir.json.circe._
import io.circe.{ Encoder, Decoder }
import io.circe.generic.semiauto._

case class Amount (v: Int) extends AnyVal
case class FruitAmount (fruit: String, amount: Amount)

implicit wval amountSchema: Schema[Amount] = Schema (SchemaType.SInteger()).
—validate (Validator.min (1) .contramap(_.v))

implicit val amountEncoder: Encoder [Amount] = Encoder.encodelnt.contramap(_.v)
implicit wval amountDecoder: Decoder [Amount] = Decoder.decodelnt.map (Amount.apply)
implicit val decoder: Decoder [FruitAmount] = deriveDecoder [FruitAmount]

implicit val encoder: Encoder[FruitAmount] = deriveEncoder [FruitAmount]

val e: Endpoint [FruitAmount, Unit, Unit, Nothing] =
endpoint.in(jsonBody [FruitAmount])

4.9.8 Next

Read on about validation.

26 Chapter 4. Table of contents

https://github.com/softwaremill/scala-common#tagging
https://github.com/softwaremill/scala-common#tagging
validation

tapir documentation, Release 0.x

4.10 Validation

Tapir supports validation for primitive types. Validation of composite values, whole data structures, business rules
enforcement etc. should be done as part of the server logic of the endpoint, using the dedicated error output (the E in
Endpoint[I, E, O, S1]) toreporterrors.

4.10.1 Single type validation

Validation rules are part of the Schema for a given type, and can be added either directly to the schema, or via the
Codec or EndpointInput/EndpointOutput. For example, when defining a codec for a type, we have the
.validate () method:

import sttp.tapir._
import sttp.tapir.CodecFormat.TextPlain

case class MyId(id: String)

implicit val myIdCodec: Codec[String, MyId, TextPlain] = Codec.string
.map (MyId(_)) (_.id)
.validate (Validator.pattern(""[A-Z].x") .contramap (_.1id))

Validators can also be added to individual inputs/outputs, in addition to whatever the codec provides:

import sttp.tapir._

val e = endpoint.in(
query [Int] ("amount")
.validate (Validator.min (0))
.validate (Validator.max (100)))

For optional/iterable inputs/outputs, to validate the contained value(s), use:

import sttp.tapir._

query [Option[Int]] ("item") .validateOption (Validator.min (0))
query[List [Int]] ("item") .validateIterable (Validator.min (0)) // validates each_,
—repeated parameter

Validation rules added using the built-in validators are translated to OpenAPI documentation.

4.10.2 Validation rules and automatic codec derivation

As validators are parts of schemas, they are looked up as part of the implicit Schema [T] values. When customising
schemas, use the . validate method on the schema to add a validator.

4.10.3 Decode failures

Codecs support reporting decoding failures, by returning a DecodeResult from the Codec.decode method.
However, this is meant for input/output values which are in an incorrect low-level format, when parsing a “raw value”
fails. In other words, decoding failures should be reported for format failures, not business validation errors.

To customise error messages that are returned upon validation/decode failures by the server, see error handling.

4.10. Validation 27

codecs.md#schemas

tapir documentation, Release 0.x

4.10.4 Enum validators

Validators for enumerations can be created using:

* Validator.derivedEnumeration, which takes a type parameter. This should be an abstract, sealed base
type, and using a macro determines the possible values

* Validator.enumeration, which takes the list of possible values

To properly represent possible values in documentation, the enum validator additionally needs an encode method,
which converts the enum value to a raw type (typically a string). This can be specified by:

* explicitly providing it using the overloaded enumerat ion method with an encode parameter
* by using one of the . encode methods on the Validator.Enumeration instance

* when the values possible values are of a basic type (numbers, strings), the encode function is inferred if not
present

* by adding the validator directly to a codec; for example:

import sttp.tapir._
import sttp.tapir.Codec.PlainCodec

sealed trait Color
case object Blue extends Color
case object Red extends Color

implicit def plainCodecForColor: PlainCodec[Color] = ({
Codec.string
.map[Color] ((_: String) match {
case "red" => Red
case "blue" => Blue
}) (_.toString.tolLowerCase)

.validate (Validator.derivedEnumeration)

If the enum is nested within an object and its values aren’t of a “basic” type (numbers, strings), regardless of whether
the codec for that object is defined by hand or derived, we need to specify the encode function by hand:

implicit def colorSchema: Schema[Color] = Schema.string.validate (Validator.
—derivedEnumeration.encode (_.toString.toLowerCase))

4.10.5 Next

Read on about content types.

4.11 Content type

The endpoint’s output content type is bound to the body outputs, that are specified for the endpoint (if any). The codec
of a body output contains a CodecFormat, which in turns contains the MediaType instance.

4.11.1 Codec formats and server interpreters

Codec formats define the default media type, which will be set as the Content-Type header. However, any user-
provided value will override this default:

28 Chapter 4. Table of contents

tapir documentation, Release 0.x

* dynamic content type, using . out (header (HeaderNames.ContentType))

e fixed content type, using e.g. out (header (Header.contentType (MediaType.
Applicationdson)))

4.11.2 Multiple content types

Multiple, alternative content types can be specified using oneOf, similarly as when specifying status code mappings.

On the server side, the appropriate mapping will be chosen using content negotiation, via the Accept header, using
the configurable ContentTypeInterceptor. Note that both the base media type, and the charset for text types
are taken into account.

On the client side, the appropriate mapping will be chosen basing on the Content -Type header value.

For example:

import sttp.tapir._
import sttp.tapir.Codec. {JsonCodec, XmlCodec}
import sttp.model.StatusCode

case class Entity (name: String)
implicit val jsonCodecForOrganization: JsonCodec[Entity] = 2727
implicit wval xmlCodecForOrganization: XmlCodec[Entity] = 2?27

endpoint.out (
oneOf (
oneOfMapping (StatusCode.Ok, customJsonBody[Entity]),
oneOfMapping (StatusCode.Ok, xmlBody[Entity])

For details on how to create codes manually or derive them automatically, see custom types and the subsequent section
on json.

4.11.3 Next

Read on about json support.

4.12 Working with JSON

Json values are supported through codecs, which encode/decode values to json strings. Most often, you’ll be using
a third-party library to perform the actual json parsing/printing. Currently, Circe, pPickle, Spray JSON, Play JSON,
Tethys JSON, Jsoniter-scala, and Json4s are supported.

All of the integrations, when imported into scope, define a jsonBody [T] method. This method depends on
library-specific implicits being in scope, and derives from them a json codec. The derivation also requires implicit
Schema [T] and Validator [T] instances, which should be automatically derived. For more details see documen-
tation on supporting custom types.

If you have a custom, implicit Codec [String, T, Json] instance, you should use the customJsonBody [T]
method instead. This description of endpoint input/output, instead of deriving a codec basing on other library-specific
implicits, uses the json codec that is in scope.

4.12. Working with JSON 29

https://github.com/circe/circe
http://www.lihaoyi.com/upickle/
https://github.com/spray/spray-json
https://github.com/playframework/play-json
https://github.com/tethys-json/tethys
https://github.com/plokhotnyuk/jsoniter-scala
https://github.com/json4s/json4s

tapir documentation, Release 0.x

4.12.1 Circe

To use Circe, add the following dependency to your project:

o

"com.softwaremill.sttp.tapir" %% "tapir-json-circe"™ % "0.19.0-M6"

Next, import the package (or extend the TapirJsonCirce trait, see MyTlapir):

’import sttp.tapir. json.circe._

This will allow automatically deriving Codecs which, given an in-scope circe Encoder/Decoder and a Schema,
will create a codec using the json media type. Circe includes a couple of approaches to generating encoders/decoders
(manual, semi-auto and auto), so you may choose whatever suits you.

Note that when using Circe’s auto derivation, any encoders/decoders for custom types must be in scope as well.

Additionally, the above import brings into scope the jsonBody [T] body input/output description, which uses the
above codec.

For example, to automatically generate a JSON codec for a case class:

import sttp.tapir._

import sttp.tapir.json.circe._
import sttp.tapir.generic.auto.
import io.circe.generic.auto._

case class Book (author: String, title: String, year: Int)

val bookInput: EndpointIO[Book] = jsonBody [Book]

Circe lets you select an instance of io.circe.Printer to configure the way JSON objects are rendered. By
default Tapir uses Printer.nospaces, which would render:

import io.circe._

Json.obj (
"keyl" -> Json.fromString("present"),
"key2" -> Json.Null

as

{"keyl":"present", "key2" :null}

Suppose we would instead want to omit null-values from the object and pretty-print it. You can configure this by
overriding the jsonPrinterintapir.circe. json.TapirJsonCirce:

import sttp.tapir.json.circe._
import io.circe.Printer

object MyTapirJsonCirce extends TapirJsonCirce {
override def jsonPrinter: Printer = Printer.spaces2.copy (dropNullValues = true)

import MyTapirJsonCirce._

Now the above JSON object will render as

30 Chapter 4. Table of contents

tapir documentation, Release 0.x

{"keyl":"present"}

4.12.2 pPickle

To use pPickle add the following dependency to your project:

o)

"com.softwaremill.sttp.tapir" %% "tapir-json-upickle™ % "0.19.0-M6"

Next, import the package (or extend the TapirJsonuPickle trait, see MyZapir and add TapirJsonuPickle
not TapirCirceJson):

’import sttp.tapir. json.upickle._

uPickle requires a ReadWriter in scope for each type you want to serialize. In order to provide one use the macroRW
macro in the companion object as follows:

import sttp.tapir._

import sttp.tapir.generic.auto._
import upickle.default._

import sttp.tapir.json.upickle._

case class Book (author: String, title: String, year: Int)
object Book {

implicit val rw: ReadWriter[Book] = macroRW

val bookInput: EndpointIO[Book] = jsonBody [Book]

Like Circe, uPickle allows you to control the rendered json output. Please see the Custom Configuration of the manual
for details.

For more examples, including making a custom encoder/decoder, see TapirJsonuPickleTests.scala

4.12.3 Play JSON

To use Play JSON add the following dependency to your project:

[}

"com.softwaremill.sttp.tapir" %% "tapir—-json-play" % "0.19.0-M6"

Next, import the package (or extend the TapirJsonPlay trait, see MyTlapir and add TapirJsonPlay not
TapirCirceJdson):

’import sttp.tapir. json.play._

Play JSON requires Reads and Writes implicit values in scope for each type you want to serialize.

4.12.4 Spray JSON

To use Spray JSON add the following dependency to your project:

)

"com.softwaremill.sttp.tapir" %% "tapir-json-spray" % "0.19.0-M6"

4.12. Working with JSON 31

https://com-lihaoyi.github.io/upickle/#CustomConfiguration
https://github.com/softwaremill/tapir/blob/master/json/upickle/src/test/scala/sttp/tapir/json/upickle/TapirJsonuPickleTests.scala

tapir documentation, Release 0.x

Next, import the package (or extend the TapirJdsonSpray trait, see MyZapir and add TapirJsonSpray not
TapirCircedJson):

import sttp.tapir.json.spray._

Spray JSON requires a JsonFormat implicit value in scope for each type you want to serialize.

4.12.5 Tethys JSON

To use Tethys JSON add the following dependency to your project:

"com.softwaremill.sttp.tapir" %% "tapir-json-tethys" % "0.19.0-M6"

Next, import the package (or extend the TapirJsonTethys trait, see MyTapir and add TapirJsonTethys not
TapirCircedJson):

’import sttp.tapir. json.tethysjson._

Tethys JSON requires JsonReader and JsonWriter implicit values in scope for each type you want to serialize.

4.12.6 Jsoniter Scala

To use Jsoniter-scala add the following dependency to your project:

[}

’"com.softwaremill.sttp.tapir" %% "tapir-jsoniter-scala" % "0.19.0-Mo6"

Next, import the package (or extend the TapirJsonJsoniter trait, see MyTapir and add TapirJsonJsoniter
not TapirCirceJson):

’import sttp.tapir. json. jsoniter._

Jsoniter Scala requires JsonValueCodec implicit value in scope for each type you want to serialize.

4.12.7 Jsonds

To use json4s add the following dependencies to your project:

"com.softwaremill.sttp.tapir" %% "tapir-json-jsonds"™ % "0.19.0-M6"

And one of the implementations:

°

"org.json4ds" %% "jsonds-native" % "4.0.3"
// Or

"org.jsond4s" %% "Jjson4ds-jackson" % "4.0.3"

Next, import the package (or extend the TapirJson4s trait, see MyTapir and add TapirJsonds instead of
TapirCirceJdson):

import sttp.tapir.json. jsonds._

Jsonds requires Serialization and Formats implicit values in scope, for example:

32 Chapter 4. Table of contents

https://github.com/plokhotnyuk/jsoniter-scala
https://github.com/json4s/json4s

tapir documentation, Release 0.x

import org.jsonds._

/S
implicit val serialization: Serialization = org.Jjson4ds.jackson.Serialization
implicit val formats: Formats = org.jsonéds.jackson.Serialization.formats (NoTypeHints)

4.12.8 Zio JSON

To use Zio JSON, add the following dependency to your project:

"com.softwaremill.sttp.tapir" %% "tapir-json-zio" % "0.19.0-Me6"

Next, import the package (or extend the TapirJsonZio trait, see MyTapir and add TapirJsonZio instead of
TapirCircedJson):

’ import sttp.tapir.json.zio._

Zio JSON requires JsonEncoder and JsonDecoder implicit values in scope for each type you want to serialize.

4.12.9 Other JSON libraries

To add support for additional JSON libraries, see the sources for the Circe codec (which is just a couple of lines of
code).

4.12.10 Schemas

To derive json codecs automatically, not only implicits from the base library are needed (e.g. a circe
Encoder/Decoder), but also an implicit Schema [T] value, which provides a mapping between a type T and
its schema. A schema-for value contains a single schema: Schema field.

See custom types for details.

4.12.11 Next

Read on about working with forms.

4.13 Forms

4.13.1 URL-encoded forms

An URL-encoded form input/output can be specified in two ways. First, it is possible to map all form fields as a
Seq[(String, String)],orMap[String, String] (whichismore convenient iffieldscan’thave multiple
values):

import sttp.tapir._

formBody [Seq[(String, String)]]: EndpointIO.Body[String, Seq][(String, String)]]
formBody [Map[String, String]]: EndpointIO.Body[String, Map[String, String]]

Second, form data can be mapped to a case class. The codec for the case class is automatically derived using a macro
at compile-time. The fields of the case class should have types, for which there is a plain text codec. For example:

4.13. Forms 33

https://github.com/softwaremill/tapir/blob/master/json/circe/src/main/scala/sttp/tapir/json/circe/TapirJsonCirce.scala

tapir documentation, Release 0.x

import sttp.tapir._
import sttp.tapir.generic.auto._

case class RegistrationForm(name: String, age: Int, news: Boolean, city:
—Option[String])

formBody [RegistrationForm] : EndpointIO.Body[String, RegistrationForm]

Each form-field is named the same as the case-class-field. The names can be transformed to snake or kebab case by
providing an implicit tapir.generic.Configuraton, or customised using the @encodedName annotation.

4.13.2 Multipart forms

Similarly as above, multipart form input/outputs can be specified in two ways. To map to all parts of a multipart body,
use:

import sttp.tapir._
import sttp.model.Part

multipartBody: EndpointIO.Body[Seq[RawPart], Seq[Part[Array[Byte]]]]

Part is a case class containing the name of the part, disposition parameters, headers, and the body. The bod-
ies will be mapped as byte arrays (Array [Byte]). Custom multipart codecs can be defined with the Codec.
multipartCodec method, and then used withmultipartBody [T].

As with URL-encoded forms, multipart bodies can be mapped directly to case classes, however without the restriction
on codecs for individual fields. Given a field of type T, first a plain text codec is looked up, and if one isn’t found, any
codec for any media type (e.g. JSON) is searched for.

Each part is named the same as the case-class-field. The names can be transformed to snake or kebab case by providing
an implicit sttp.tapir.generic.Configuraton, or customised using the @encodedName annotation.

Additionally, the case class to which the multipart body is mapped can contain both normal fields, and fields of type
Part [T]. This is useful, if part metadata (e.g. the filename) is relevant.

For example:

import sttp.tapir._

import sttp.model.Part

import java.io.File

import sttp.tapir.generic.auto._

case class RegistrationForm(userData: User, photo: Part[File], news: Boolean)
case class User(email: String)

multipartBody [RegistrationForm]: EndpointIO.Body|[Seq[RawPart], RegistrationForm]

4.13.3 Next

Read on about authentication.

34 Chapter 4. Table of contents

tapir documentation, Release 0.x

4.14 Authentication

Inputs which carry authentication data wrap another input can be marked as such by declaring them using members of
the auth object. Apart from predefined codecs for some authentication methods, such inputs will be treated differently
when generating documentation. Otherwise, they behave as normal inputs which map to the given type.

Currently, the following authentication inputs are available (assuming import sttp.tapir._):

* auth.apiKey (anotherInput): wraps any other input and designates it as an api key. The input is typi-
cally a header, cookie or a query parameter

e auth.basic[T]: reads data from the Authorization header, removing the Basic prefix. To parse the
data as a base64-encoded username/password combination, use: basic [UsernamePassword].

* auth.bearer [T]: reads data from the Authorization header, removing the Bearer prefix. To get the
string as a token, use: bearer [String].

e auth.ocauth2.authorizationCode (authorizationUrl, tokenUrl, scopes,
refreshUrl): EndpointInput[String]: creates an OAuth2 authorization using authorization code
- sign in using an auth service (for documentation, requires defining also the oauth2-redirect.html, see
Generating OpenAPI documentation)

Multiple authentication inputs indicate that all of the given authentication values should be provided. Spec-
ifying alternative authentication methods (where only one value out of many needs to be provided) is cur-
rently not supported. However, optional authentication can be described by mapping to optional types, e.g.
bearer [Option[String]].

When interpreting a route as a server, it is useful to define the authentication input first, to be able to share the
authentication logic among multiple endpoints easily. See server logic for more details.

For each auth scheme, one can define WWW-Authent icate headers that should be returned by the server in case
input is not provided. Default behavior is to return 401 status with the headers needed for authentication.

For example if you define endpoint .get.in ("path") .in (auth.basic[UsernamePassword] ()) then
your browser will show you a password prompt.

4.14.1 Next

Read on about streaming support.

4.15 Streaming support

Both input and output bodies can be mapped to a stream, by using stream|[=] Body (streams). The parameter
streams must implement the St reams [S] capability, and determines the precise type of the binary stream sup-
ported by the given non-blocking streams implementation. The interpreter must then support the given capability.
Refer to the documentation of server/client interpreters for more information.

Note: Here, streams refer to asynchronous, non-blocking, “reactive” stream implementations, such as akka-streams,
fs2 or zio-streams. If you’d like to use blocking streams (such as InputStream), these are available through e.g.
input St reamBody without any additional requirements on the interpreter.

Adding a stream body input/output influences both the type of the input/output, as well as the 4th type parameter of
Endpoint, which specifies the requirements regarding supported stream types for interpreters.

4.14. Authentication 35

https://doc.akka.io/docs/akka/current/stream/index.html
https://fs2.io
https://zio.dev/docs/datatypes/datatypes_stream

tapir documentation, Release 0.x

When using a stream body, a schema must be provided for documentation. By default, when using
streamBinaryBody, the schema will simply be that of a binary body. If you have a textual stream, you can
use streamTextBody. In that case, you’ll also need to provide the default format (media type) and optional charset
to be used to determine the content type.

To provide an arbitrary schema, use st reamBody. Note, however, that this schema will only be used for generating
documentation. The incoming stream data will not be validated using the schema validators.

For example, to specify that the output is an akka-stream, which is a (presumably large) serialised list of json objects
mapping to the Person class:

import sttp.tapir._

import sttp.tapir.generic.auto._

import sttp.capabilities.akka.AkkaStreams
import akka.stream.scaladsl._

import akka.util.ByteString

case class Person (name: String)
// copying the derived json schema type

endpoint.out (streamBody (AkkaStreams) (Schema.derived[List [Person]], CodecFormat.
—~Json ()))

See also the runnable streaming example.

4.15.1 Next

Read on about web sockets.

4.16 Web sockets

Web sockets are supported through stream pipes, converting a stream of incoming messages to a stream of outgoing
messages. That’s why web socket endpoints require both the St reams and WebSocket capabilities (see streaming
support for more information on streams).

4.16.1 Typed web sockets

Web sockets outputs can be used in two variants. In the first, both requests and responses are handled by codecs.
Typically, a codec handles either text or binary messages, signalling decode failure (which closes the web socket), if
an unsupported frame is passed to decoding.

For example, here’s an endpoint where the requests are strings (hence only text frames are handled), and the responses
are parsed/formatted as json:

import sttp.tapir._

import sttp.capabilities.akka.AkkaStreams
import sttp.tapir.json.circe._

import sttp.tapir.generic.auto._

import io.circe.generic.auto._

case class Response (msg: String, count: Int)
endpoint.out (

webSocketBody [String, CodecFormat.TextPlain, Response, CodecFormat.
—~Json] (AkkaStreams))

36 Chapter 4. Table of contents

codecs

tapir documentation, Release 0.x

When creating a webSocketBody, we need to provide the following parameters:

* the type or requests, along with its codec format (which is used to lookup the appropriate codec, as well as
determines the media type in documentation)

* the type of responses, along with its codec format
* the St reams implementation, which determines the pipe type

By default, ping-pong frames are handled automatically, fragmented frames are combined, and close frames aren’t
decoded, but this can be customised through methods on webSocketBody.

4.16.2 Raw web sockets

Alternatively, it’s possible to obtain a raw pipe transforming WebSocketFrames:

import akka.stream.scaladsl.Flow

import sttp.tapir._

import sttp.capabilities.akka.AkkaStreams
import sttp.capabilities.WebSockets
import sttp.ws.WebSocketFrame

endpoint.out (webSocketBodyRaw (AkkaStreams)) : Endpoint |
Unit,
Unit,
Flow[WebSocketFrame, WebSocketFrame, Any],
AkkaStreams with WebSockets]

Such a pipe by default doesn’t handle ping-pong frames automatically, doesn’t concatenate fragmented flames, and
passes close frames to the pipe as well. As before, this can be customised by methods on the returned output.

Request/response schemas can be customised through . requestsSchema and . responsesSchema.

4.16.3 Interpreting as a sever

When interpreting a web socket endpoint as a server, the server logic needs to provide a streaming-specific pipe from
requests to responses. E.g. in akka’s case, this will be F1low [REQ, RESP, Any].

Refer to the documentation of interpreters for more details, as not all interpreters support all settings.
4.16.4 Interpreting as a client

When interpreting a web socket endpoint as a client, after applying the input parameters, the result is a pipe represent-
ing message processing as it happens on the server.

Refer to the documentation of interpreters for more details, as there are interpreter-specific additional requirements.

4.16.5 Interpreting as documentation

Web socket endpoints can be interpreted into AsyncAPI documentation.

4.16.6 Determining if the request is a web socket upgrade

The isWebSocket endpoint input can be used to determine if the request contains the web socket upgrade headers.
The input only impacts server interpreters, doesn’t affect documentation and its value is discarded by client interpreters.

4.16. Web sockets 37

tapir documentation, Release 0.x

4.16.7 Next

Read on about datatypes integrations.

4.17 Datatypes integrations

4.17.1 Cats datatypes integration

The tapir—-cats module contains additional instances for some cats datatypes as well as additional syntax:

[}

"com.softwaremill.sttp.tapir" %% "tapir-cats" % "0.19.0-M6"

* import sttp.tapir.integ.cats.codec._ - brings schema, validator and codec instances

e import sttp.tapir.integ.cats.syntax._ - brings additional syntax for tapir types

4.17.2 Refined integration

If you use refined, the tapir—refined module will provide implicit codecs and validators for T Refined P as
long as a codec for T already exists:

[IE) o)

"com.softwaremill.sttp.tapir" %% "tapir-refined" % "0.19.0-M6"

You’ll need to extend the sttp.tapir.codec.refined.TapirCodecRefined trait or import sttp.
tapir.codec.refined._ to bring the implicit values into scope.

The refined codecs contain a validator which wrap/unwrap the value from/to its refined equivalent.

Some predicates will bind correctly to the vanilla tapir Validator, while others will bind to a custom val-
idator that might not be very clear when reading the generated documentation. Correctly bound pred-
icates can be found in integration/refined/src/main/scala/sttp/tapir/codec/refined/
TapirCodecRefined.scala. If you are not satisfied with the validator generated by tapir-refined,
you can provide an implicit ValidatorForPredicate[T, P] in scope using ‘ValidatorForPredi-
cate.fromPrimitiveValidator’ to build it (do not hesitate to contribute your work!).

4.17.3 Enumeratum integration

The tapir-enumeratum module provides schemas, validators and codecs for Enumeratum enumerations. To use,
add the following dependency:

) o

"com.softwaremill.sttp.tapir" %% "tapir-enumeratum" % "0.19.0-M6"

Then, import sttp.tapir.codec.enumeratum, or extends the sttp.tapir.codec.enumeratum.
TapirCodecEnumeratum trait.

This will bring into scope implicit values for values extending *EnumEntry.

4.17.4 Enumeration integration

There is no library for the use of the build in scala Enumeration, but it can be implemented by hand.

The example code below will generate enums to the open-api documentation.

38 Chapter 4. Table of contents

https://typelevel.org/cats/
https://github.com/fthomas/refined
https://github.com/lloydmeta/enumeratum
https://swagger.io/docs/specification/data-models/enums/

tapir documentation, Release 0.x

import sttp.tapir._

trait EnumHelper { e: Enumeration =>
import io.circe._

implicit wval enumDecoder: Decoder[e.Value] = Decoder.decodeEnumeration (e)
implicit val enumEncoder: Encoder[e.Value] = Encoder.encodeEnumeration (e)

// needs to be a def or lazy val so that the enumeration values are available!
implicit def schemaForEnum: Schema[e.Value] = Schema.string.validate (Validator.
—enumeration(e.values.tolList, v => Option(v)))
}
object Color extends Enumeration with EnumHelper ({
type Color = Value
val Blue = Value ("blue")
val Red = Value ("red")

4.17.5 NewType integration

If you use scala-newtype, the tapir-newtype module will provide implicit codecs and schemas for a types with a
@newtype and @newsubtype annotations as long as a codec and schema for its underlying value already exists:

o

"com.softwaremill.sttp.tapir" %% "tapir-newtype" % "0.19.0-Mo6"

Then, import sttp.tapir.codec.newtype._, or extend the sttp.tapir.codec.enumeratum.
TapirCodecNewType trait to bring the implicit values into scope.

4.17.6 Derevo integration

The tapir-derevo module provides a way to derive schema for your type using @derive annotation. For details
refer to derevo documentation. To use, add the following dependency:

"com.softwaremill.sttp.tapir" %% "tapir-derevo" % "0.19.0-Mo6"

Then you can derive schema for your ADT along with other typeclasses besides ADT declaration itself:

import derevo.derive
import sttp.tapir.derevo.schema

@derive (schema)
case class Person (name: String, age: Int)

//or with custom description

@derive (schema ("Type of currency in the country"))
sealed trait Currency
object Currency {
case object CommunisticCurrency extends Currency
case class USD (amount: Long) extends Currency

The annotation will simply generate a Schema [T] for your type T and put it into companion object. Generation rules
are the same as in Schema.derived[T].

4.17. Datatypes integrations 39

https://github.com/estatico/scala-newtype
https://github.com/tofu-tf/derevo#installation

tapir documentation, Release 0.x

This will also work for newtypes — estatico or supertagged:

import derevo.derive
import sttp.tapir.derevo.schema
import io.estatico.newtype.macros.newtype

object types {
@derive (schema)

@newtype
case class Amount (i: Int)

Resulting schema will be equivalent to implicitly[Schema[Int]].map (i => Some (types.
Amount (1))). Note that due to limitations of the derevo library one can’t provide custom description for
generated schema.

4.17.7 Next

Read on about serving static content.

4.18 Serving static content

Tapir contains predefined endpoints, server logic and server endpoints which allow serving static content, originating
from local files or application resources. These endpoints respect etags as well as if-modified-since headers.

4.18.1 Files

The easiest way to expose static content from the local filesystem is to use the filesServerEndpoint. This
method is parametrised with the path, at which the content should be exposed, as well as the local system path, from
which to read the data.

Such an endpoint has to be interpreted using your server interpreter. For example, using the akka-http interpreter:

import akka.http.scaladsl.server.Route

import sttp.tapir._
import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter

import scala.concurrent.Future

val filesRoute: Route = AkkaHttpServerInterpreter () .toRoute (
filesServerEndpoint [Future] ("site" / "static") ("/home/static/data")

Using the above endpoint, arequestto /site/static/css/styles.css willtry toread the /home/static/
data/css/styles.css file.

A single file can be exposed using fileServerEndpoint.

4.18.2 Resources

Similarly, the resourcesServerEndpoint can be used to expose the application’s resources at the given prefix.

40 Chapter 4. Table of contents

https://github.com/estatico/scala-newtype
https://github.com/rudogma/scala-supertagged

tapir documentation, Release 0.x

A single resource can be exposed using resourceServerEndpoint.

4.18.3 Endpoint description and server logic
The descriptions of endpoints which should serve static data, and the server logic which implements the actual
file/resource reading are also available separately for further customisation.

The filesEndpoint and resourcesEndpoint are descriptions which contain the metadata (including caching
headers) required to serve a file or resource, and possible error outcomes. This is captured using the StaticInput,
StaticErrorOuput and StaticOutput [T] classes.

The sttp.tapir.static.Files and sttp.tapir.static.Resources objects contain the logic imple-
menting server-side reading of files or resources, with etag/last modification support.

4.19 Running as an akka-http server

To expose an endpoint as an akka-http server, first add the following dependency:

"com.softwaremill.sttp.tapir" %% "tapir-akka-http-server" % "0.19.0-M6"

This will transitively pull some Akka modules in version 2.6. If you want to force your own Akka version (for example
2.5), use sbt exclusion. Mind the Scala version in artifact name:

o

"com.softwaremill.sttp.tapir" %% "tapir-akka-http-server" % "0.19.0-M6" exclude("com.
—typesafe.akka", "akka-stream_2.12")

Now import the object:

import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter

The AkkaHttpServerInterpreter objects contains methods such as: toRoute,
toRouteRecoverErrors and toDirective.

4.19.1 Using toRoute and toRouteRecoverErrors

The toRoute method requires the logic of the endpoint to be given as a function of type:

I => Future[Either[E, 0O]]

The toRouteRecoverErrors method recovers errors from failed futures, and hence requires that E is a subclass
of Throwable (an exception); it expects a function of type I => Future[O].

For example:

import sttp.tapir._

import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter
import scala.concurrent.Future

import akka.http.scaladsl.server.Route

def countCharacters(s: String): Future[Either[Unit, Int]] =
Future.successful (Right [Unit, Int] (s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Any] =

(continues on next page)

4.19. Running as an akka-http server 41

https://doc.akka.io/docs/akka-http/current/

tapir documentation, Release 0.x

(continued from previous page)

endpoint.in(stringBody) .out (plainBody[Int])

val countCharactersRoute: Route =
AkkaHttpServerInterpreter () .toRoute (countCharactersEndpoint) (countCharacters)

Note that the second argument to toRoute is a function with one argument, a tuple of type I. This means that
functions which take multiple arguments need to be converted to a function using a single argument using . tupled:

import sttp.tapir._

import sttp.tapir.server.akkahttp._
import scala.concurrent.Future

import akka.http.scaladsl.server.Route

s

def logic(s: String, i: Int): Future[Either[Unit, String]]
val anEndpoint: Endpoint|[(String, Int), Unit, String, Any] = 2?7

val aRoute: Route = AkkaHttpServerInterpreter().toRoute (anEndpoint) ((logic _) .tupled)

4.19.2 Combining directives
The tapir-generated Route captures from the request only what is described by the endpoint. Combine with other
akka-http directives to add additional behavior, or get more information from the request.

For example, wrap the tapir-generated route in a metrics route, or nest a security directive in the tapir-generated
directive.

Edge-case endpoints, which require special logic not expressible using tapir, can be implemented directly using akka-
http. For example:

import sttp.tapir._
import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter
import akka.http.scaladsl.server._

case class User (email: String)

def metricsDirective: DirectiveO = 2?77
def securityDirective: Directivel [User] = 2?77
val tapirEndpoint: Endpoint[String, Unit, Unit, Any] = endpoint.in(path[String] ("input
"))
val myRoute: Route = metricsDirective {
securityDirective { user =>

AkkaHttpServerInterpreter () .toRoute (tapirEndpoint) { input =>
227

/* here we can use both ‘user' and “input’' values #*/

4.19.3 Streaming

The akka-http interpreter accepts streaming bodies of type Source[ByteString, Any], as described
by the AkkaStreams capability. Both response bodies and request bodies can be streamed. Usage:
streamBody (AkkaStreams) (schema, format).

The capability can be added to the classpath independently of the interpreter through the "com.softwaremill.
sttp.shared" %% "akka" dependency.

42 Chapter 4. Table of contents

tapir documentation, Release 0.x

4.19.4 Web sockets

The interpreter supports web sockets, with pipes of type Flow [REQ, RESP, Any]. See web sockets for more
details.

akka-http does not expose control frames (Ping, Pong and Close), so any setting regarding them are discarded, and
ping/pong frames which are sent explicitly are ignored. Automatic pings can be instead enabled through configuration.

4.19.5 Server Sent Events

The interpreter supports SSE (Server Sent Events).

For example, to define an endpoint that returns event stream:

import akka.stream.scaladsl.Source

import sttp.model.sse.ServerSentEvent

import sttp.tapir._

import sttp.tapir.server.akkahttp.{AkkaHttpServerInterpreter, serverSentEventsBody}

import scala.concurrent.Future
val sseEndpoint = endpoint.get.out (serverSentEventsBody)
val routes = AkkaHttpServerInterpreter ().toRoute (sseEndpoint) (_ =>

Future.successful (Right (Source.single (ServerSentEvent (Some ("data"), None, None,
—None))))

)

4.19.6 Configuration

The interpreter can be configured by providing an AkkaHttpServerOptions value, see server options for details.

4.19.7 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See server logic
for details.

4.20 Running as an http4s server

To expose an endpoint as an http4s server, first add the following dependency:

o

’"com.softwaremill.sttp.tapir" %% "tapir-http4s-server" % "0.19.0-Mo6"

and import the object:

’import sttp.tapir.server.httpd4s.Httpd4sServerInterpreter

This objects contains the toRoutes and toRoutesRecoverErrors methods. This first requires the logic of the
endpoint to be given as a function of type:

’I => F[Either[E, O]]

4.20. Running as an http4s server 43

https://doc.akka.io/docs/akka-http/current/server-side/websocket-support.html#automatic-keep-alive-ping-support
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://http4s.org

tapir documentation, Release 0.x

where F [_] is the chosen effect type. The second recovers errors from failed effects, and hence requires that E is a
subclass of Throwable (an exception); it expects a function of type I => F [O]. For example:

import sttp.tapir._

import sttp.tapir.server.httpd4s.Http4sServerInterpreter
import cats.effect.IO

import org.httpéds.HttpRoutes

def countCharacters(s: String): IO[Either[Unit, Int]] =
IO0.pure (Right [Unit, Int] (s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Any] =
endpoint.in(stringBody) .out (plainBody[Int])

val countCharactersRoutes: HttpRoutes[IO] =
Httpd4sServerInterpreter[IO] () .toRoutes (countCharactersEndpoint) (countCharacters _)

Note that the second argument to toRoute is a function with one argument, a tuple of type I. This means that
functions which take multiple arguments need to be converted to a function using a single argument using . tupled:

import sttp.tapir._

import sttp.tapir.server.httpé4s.Http4sServerInterpreter
import cats.effect.IO

import org.httpéds.HttpRoutes

def logic(s: String, i: Int): IO[Either[Unit, String]] = 2?7

val anEndpoint: Endpoint|[(String, Int), Unit, String, Any] = 2?7
val routes: HttpRoutes|[IO] = HttpédsServerlInterpreter|[IO] ().
—toRoutes (anEndpoint) ((logic _) .tupled)

The created HttpRoutes are the usual httpds Kleisli-based transformation of a Request to a Response,
and can be further composed using http4s middlewares or request-transforming functions. The tapir-generated
HttpRoutes captures from the request only what is described by the endpoint.

It’s completely feasible that some part of the input is read using a http4s wrapper function, which is then composed with
the tapir endpoint descriptions. Moreover, “edge-case endpoints”, which require some special logic not expressible
using tapir, can be always implemented directly using http4s.

4.20.1 Streaming
The http4s interpreter accepts streaming bodies of type Stream[F, Byte], as described by the

Fs2Streams capability. Both response bodies and request bodies can be streamed. Usage:
streamBody (Fs2Streams [F]) (schema, format).

The capability can be added to the classpath independently of the interpreter through the "com.softwaremill.
sttp.shared" %% "http4s" dependency.

4.20.2 Web sockets

The interpreter supports web sockets, with pipes of type Pipe [F, REQ, RESP]. See web sockets for more details.

4.20.3 Server Sent Events

The interpreter supports SSE (Server Sent Events).

For example, to define an endpoint that returns event stream:

44 Chapter 4. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events

tapir documentation, Release 0.x

import cats.effect.IO

import sttp.model.sse.ServerSentEvent

import sttp.tapir._

import sttp.tapir.server.httpds.{Http4sServerInterpreter, serverSentEventsBody}

val sseEndpoint = endpoint.get.out (serverSentEventsBody[IO])

val routes = HttpédsServerInterpreter[IO] ().toRoutes (sseEndpoint) (_ =>
IO (Right (fs2.Stream(ServerSentEvent (Some ("data"), None, None, None))))

4.20.4 Configuration

The interpreter can be configured by providing an Ht tp4sServerOptions value, see server options for details.

The http4s options also includes configuration for the blocking execution context to use, and the io chunk size.

4.20.5 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See server logic
for details.

4.21 Running as an http4s server using ZIO

The tapir-zio module defines type aliases and extension methods which make it more ergonomic to work with
ZIO and tapir. Moreover, the tapir-zio-http4s-server contains an interpreter useful when exposing the
endpoints using the http4s server.

You’ll need the following dependency for the ZEndpoint, ZServerEndpoint type aliases and helper classes:

)

"com.softwaremill.sttp.tapir" %% "tapir-zio" % "0.19.0-M6"

or just add the zio-http4s integration which already depends on tapir-zio:

o

’"com.Softwaremill.sttp.tapir" %% "tapir-zio-httpé4s-server" $ "0.19.0-M6"

Next, instead of the usual import sttp.tapir._, youshould import (or extend the ZTapir trait, see MyTapir):

’import sttp.tapir.ztapir._

|

This brings into scope all of the basic input/output descriptions, which can be used to define an endpoint. Additionally,
it defines the ZEndpoint type alias, which should be used instead of Endpoint.

Note: You should have only one of these imports in your source file. Otherwise, you’ll get naming conflicts. The
import sttp.tapir.ztapir._ importis meantas a complete replacement of import sttp.tapir._.

4.21.1 Server logic

When defining the business logic for an endpoint, the following methods are available, which replace the standard
ones:

4.21. Running as an http4s server using ZIO 45

https://zio.dev
https://http4s.org

tapir documentation, Release 0.x

e def zServerLogic(logic: I => ZIO[R, E, O]): ZServerEndpoint[R, I, E, O]
e def zServerLogicPart (logicPart: T => ZIO[R, E, U])
e def zServerLogicForCurrent (logicPart: I => ZIO[R, E, U])

The first defines complete server logic, while the second and third allow defining server logic in parts.

4.21.2 Exposing endpoints using the http4s server

To interpret a ZServerEndpoint as a http4s server, use the following interpreter:

import sttp.tapir.server.httpéds.ztapir.ZHttp4d4sServerInterpreter

To help with type-inference, you first need to call ZHttp4sServerInterpreter () . from() providing:

e an endpoint and logic: def from[I, E, O] (e: ZEndpoint[I, E, O]) (logic: I =>
ZIO[R, E, 0O1)

* asingle server endpoint: def from[I, E, O] (se: ZServerEndpoint[R, I, E, 0])

* multiple server endpoints: def from(serverEndpoints: List[ZServerEndpoint[R, _, _,

1)
Then, call . toRoutes to obtain the http4s Ht t pRoutes instance.
Note that the resulting Ht tpRoutes always require Clock and Blocking in the environment.

If you have multiple endpoints with different environmental requirements, the environment must be first widened so
that it is uniform across all endpoints, using the . widen method:

import org.http4s.HttpRoutes

import sttp.tapir.ztapir._

import sttp.tapir.server.httpéds.ztapir.ZHttp4d4sServerInterpreter
import zio.{Has, RIO, ZIO}

import zio.blocking.Blocking

import zio.clock.Clock

import zio.interop.catz._

trait Componentl
trait Component2
type Servicel = Has|[Componentl]
type Service2 = Has|[Component2]

val serverEndpointl: ZServerEndpoint[Servicel, Unit, Unit, Unit] = 2727
val serverEndpoint2: ZServerEndpoint[Service2, Unit, Unit, Unit] = ?27?°?

type Env = Servicel with Service2
val routes: HttpRoutes[RIO[Env with Clock with Blocking, *]] =
ZHttpdsServerInterpreter () .from(List (
serverEndpointl.widen[Env],
serverEndpoint2.widen [Env]
)) .toRoutes // this is where zio-cats interop is needed

4.21.3 Streaming

The http4s interpreter accepts streaming bodies of type zio.stream.Stream[Throwable, Byte], as de-
scribed by the ZioStreams capability. Both response bodies and request bodies can be streamed. Usage:
streamBody (ZioStreams) (schema, format).

46 Chapter 4. Table of contents

tapir documentation, Release 0.x

The capability can be added to the classpath independently of the interpreter through the "com.softwaremill.

[

sttp.shared" %% "zio" or tapir-zio dependency.

4.21.4 Web sockets

The interpreter supports web sockets, with pipes of type zio.stream.Stream[Throwable, REQ] => zio.
stream.Stream[Throwable, RESP]. See web sockets for more details.

4.21.5 Server Sent Events

The interpreter supports SSE (Server Sent Events).

For example, to define an endpoint that returns event stream:

import sttp.model.sse.ServerSentEvent

import sttp.tapir.server.httpéds.ztapir.{ZHttp4sServerInterpreter,
—serverSentEventsBody}

import sttp.tapir.ztapir._

import org.http4s.HttpRoutes

import zio.{UIO, RIO}

import zio.blocking.Blocking

import zio.clock.Clock

import zio.stream.Stream

val sseEndpoint: ZEndpoint [Unit, Unit, Stream[Throwable, ServerSentEvent]] = endpoint.
—get.out (serverSentEventsBody)

val routes: HttpRoutes[RIO[Clock with Blocking, *]] = ZHttp4sServerInterpreter ()
.from(sseEndpoint.zServerLogic(_ => UIO(Stream(ServerSentEvent (Some ("data"), None,
—~None, None)))))
.toRoutes

4.21.6 Examples

Three examples of using the ZIO integration are available. The first two showcase basic functionality, while the third
shows how to use partial server logic methods:
* ZIO basic example

¢ 710 environment example

e 710 partial server logic example

4.22 Running as a Finatra server

To expose an endpoint as an finatra server, first add the following dependency:

)

"com.softwaremill.sttp.tapir" %% "tapir-finatra-server" % "0.19.0-M6"

and import the object:

import sttp.tapir.server.finatra.FinatraServerInterpreter

4.22. Running as a Finatra server 47

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ZioExampleHttp4sServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ZioEnvExampleHttp4sServer.scala
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/ZioPartialServerLogicHttp4s.scala
https://twitter.github.io/finatra/

tapir documentation, Release 0.x

or if you would like to use cats-effect project, you can add the following dependency:

o

"com.softwaremill.sttp.tapir" %% "tapir-finatra-server-cats" % "0.19.0-M6"

and import the object:

import sttp.tapir.server.finatra.cats.FinatraCatsServerInterpreter

The interpreter objects contain the toRoute and toRouteRecoverErrors method. The first one requires the
logic of the endpoint to be given as a function of type (note this is a Twitter Future or a cats-effect project’s Ef fect

type):

I => Future[Either[E, O]]

or giben an effect type that supports cats-effect’s Ef fect [F] type, for example, project Catbird’s Rerunnbale:

I => Rerunnable[Either[E, O]]

The second recovers errors from failed futures, and hence requires that E is a subclass of Throwable (an exception);
it expects a function of type I => Future[O] ortype I => F [O] if F supports cat-effect’s Ef fect type.

For example:

import sttp.tapir._
import sttp.tapir.server.finatra.{ FinatraServerInterpreter, FinatraRoute }
import com.twitter.util.Future

def countCharacters(s: String): Future[Either[Unit, Int]] =
Future.value (Right [Unit, Int] (s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Any] =
endpoint.in(stringBody) .out (plainBody [Int])

val countCharactersRoute: FinatraRoute = FinatraServerInterpreter().
—toRoute (countCharactersEndpoint) (countCharacters)

or a cats-effect’s example:

import cats.effect.IO

import cats.effect.std.Dispatcher

import sttp.tapir._

import sttp.tapir.server.finatra.FinatraRoute

import sttp.tapir.server.finatra.cats.FinatraCatsServerInterpreter

def countCharacters(s: String): IO[Either[Unit, Int]] =
IO0.pure (Right [Unit, Int] (s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Any] =
endpoint.in(stringBody) .out (plainBody [Int])

def dispatcher: Dispatcher[IO] = 27?7

val countCharactersRoute: FinatraRoute = FinatraCatsServerlInterpreter (dispatcher).
—toRoute (countCharactersEndpoint) (countCharacters)

Note that the second argument to toRoute is a function with one argument, a tuple of type I. This means that
functions which take multiple arguments need to be converted to a function using a single argument using . tupled:

48 Chapter 4. Table of contents

https://github.com/travisbrown/catbird

tapir documentation, Release 0.x

import sttp.tapir._
import sttp.tapir.server.finatra.{ FinatraServerInterpreter, FinatraRoute }
import com.twitter.util.Future

def logic(s: String, i: Int): Future[Either[Unit, String]] = 2727

val anEndpoint: Endpoint|[(String, Int), Unit, String, Any] = ?2°°7?

val aRoute: FinatraRoute = FinatraServerInterpreter () .toRoute (anEndpoint) ((logic _).
—tupled)

Now that you’ve created the FinatraRoute, add TapirController as a trait to your Controller. You can
then add the created route with addTapirRoute.

import sttp.tapir.server.finatra._
import com.twitter.finatra.http.Controller

val aRoute: FinatraRoute = ?72?
class MyController extends Controller with TapirController ({
addTapirRoute (aRoute)

4.22.1 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See server logic
for details.

4.23 Running as a Play server

To expose endpoint as a play-server first add the following dependencies:

)

"com.softwaremill.sttp.tapir" %% "tapir-play-server" % "0.19.0-M6"

and (if you don’t already depend on Play)

o

"com.typesafe.play" %% "play-akka-http-server" % "2.8.7"

or

o

"com.typesafe.play" %% "play-netty-server" % "2.8.7"

depending on whether you want to use netty or akka based http-server under the hood.

Then import the object:

import sttp.tapir.server.play.PlayServerInterpreter

This object contains the toRoute and toRoutesRecoverError methods. This first requires the logic of the
endpoint to be given as a function of type:

I => Future[Either[E, O]]

The second recovers errors from failed effects, and hence requires that E is a subclass of Throwable (an exception);
it expects a function of type I => Future [O]. For example:

4.23. Running as a Play server 49

https://www.playframework.com/

tapir documentation, Release 0.x

import sttp.tapir._

import sttp.tapir.server.play.PlayServerInterpreter
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future

import akka.stream.Materializer

import play.api.routing.Router.Routes

implicit val materializer: Materializer = 277

def countCharacters(s: String): Future[Either[Unit, Int]] =
Future (Right [Unit, Int] (s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Any] =
endpoint.in(stringBody) .out (plainBody [Int])

val countCharactersRoutes: Routes =
PlayServerInterpreter () .toRoutes (countCharactersEndpoint) (countCharacters _)

Note that the second argument to toRoutes is a function with one argument, a tuple of type I. This means that
functions which take multiple arguments need to be converted to a function using a single argument using . tupled:

import sttp.tapir._

import sttp.tapir.server.play._

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future

import akka.stream.Materializer

import play.api.routing.Router.Routes

implicit val materializer: Materializer = 277

def logic(s: String, i: Int): Future[Either[Unit, String]] = 2727

val anEndpoint: Endpoint|[(String, Int), Unit, String, Any] = 27?7

val aRoute: Routes = PlayServerlInterpreter ().toRoutes (anEndpoint) ((logic _) .tupled)

4.23.1 Bind the routes

Creating the HTTP server manually

An HTTP server can then be started as in the following example:

import play.core.server._
import play.api.routing.Router.Routes

val aRoute: Routes = 777

object Main ({
// JVM entry point that starts the HTTP server
def main(args: Array([String]): Unit = {
val playConfig = ServerConfig (port =
sys.props.get ("http.port") .map(_.toInt) .orElse (Some (9000))
)
NettyServer.fromRouterWithComponents (playConfig) { components =>
aRoute

50 Chapter 4. Table of contents

tapir documentation, Release 0.x

As part of an existing Play application

Or, if you already have an existing Play application, you can create a Router class and bind it to the application.

First, add a line like following in the routes files:

-> /api api.ApiRouter

Then create a class like this:

class ApiRouter @Inject () () extends SimpleRouter {
override def routes: Routes = {
anotherRoutes.orElse (tapirGeneratedRoutes)

}

Find more details about how to bind a Router to your application in the Play framework documentation.

4.23.2 Configuration

The interpreter can be configured by providing a PlayServerOptions value, see server options for details.

4.23.3 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See server logic
for details.

4.24 Running as a Vert.X server

Endpoints can be mounted as Vert.x Routes on top of a Vert.x Router.

Vert.x interpreter can be used with different effect systems (cats-effect, ZIO) as well as Scala’s standard Future.

4.24.1 Scala’s standard Future

Add the following dependency

"com.softwaremill.sttp.tapir" %% "tapir-vertx-server" % "0.19.0-M6"

to use this interpreter with Future.

Then import the object:

’import sttp.tapir.server.vertx.VertxFutureServerInterpreter._

This object contains the following methods:

e route(e: Endpoint[I, E, O, Any]) (logic: I => Future[Either[E, O]]): returns
a function Router => Route that will create a route matching the endpoint definition, and attach your
logic as an handler. Errors will be recovered automatically (but generically)

* routeRecoverErrors(e: Endpoint[I, E, O, Any]) (logic: I => Future[O]): re-
turns a function Router => Route that will create a route matching the endpoint definition, and attach your
logic as an handler. You're providing your own way to deal with errors happening in the 1ogic function.

4.24. Running as a Vert.X server 51

https://www.playframework.com/documentation/2.8.x/ScalaSirdRouter#Binding-sird-Router

tapir documentation, Release 0.x

* blockingRoute (e: Endpoint[I, E, O, Any]) (logic: I => Futurel[Either[E,
0]11): returns a function Router => Route that will create a route matching the endpoint definition, and
attach your 1ogic as an blocking handler. Errors will be recovered automatically (but generically)

* blockingRouteRecoverErrors(e: Endpoint[I, E, O, Any]) (logic: I =>
Future[O]): returns a function Router => Route that will create a route matching the endpoint
definition, and attach your 1ogic as a blocking handler. You’re providing your own way to deal with errors
happening in the 1ogic function.

The methods recovering errors from failed effects, require E to be a subclass of Throwable (an exception); and
expect a function of type I => Future[O].

Note that the second argument to route etc. is a function with one argument, a tuple of type I. This means that
functions which take multiple arguments need to be converted to a function using a single argument using . tupled:

import sttp.tapir._

import sttp.tapir.server.vertx.VertxFutureServerInterpreter
import io.vertx.ext.web._

import scala.concurrent.Future

def logic(s: String, i: Int): Future[Either[Unit, String]] = 2727

val anEndpoint: Endpoint|[(String, Int), Unit, String, Any] = 2?7

val aRoute: Router => Route = VertxFutureServerInterpreter ().route (anEndpoint) ((logic,,
—_) .tupled)

In practice, routes will be mounted on a router, this router can then be used as a request handler for your http server.
An HTTP server can then be started as in the following example:

import sttp.tapir._

import sttp.tapir.server.vertx.VertxFutureServerInterpreter
import sttp.tapir.server.vertx.VertxFutureServerInterpreter._
import io.vertx.core.Vertx

import io.vertx.ext.web._

import scala.concurrent. {Await, Future}

import scala.concurrent.duration._

object Main {
// JVM entry point that starts the HTTP server

def main(args: Array([String]): Unit = {

val vertx = Vertx.vertx()

val server = vertx.createHttpServer ()

val router = Router.router (vertx)

val anEndpoint: Endpoint|[(String, Int), Unit, String, Any] = ?2?? // your,
—definition here

def logic(s: String, i: Int): Future[Either[Unit, Stringl]l] = ??? // your logic,
—here

val attach = VertxFutureServerInterpreter () .route (anEndpoint) ((logic _) .tupled)

attach (router) // your endpoint is now attached to the router, and the route has_,
—been created
Await.result (server.requestHandler (router) .1listen(9000) .asScala, Duration.Inf)

4.24.2 Configuration

Every endpoint can be configured by providing an instance of VertxFutureEndpointOptions, see server op-
tions for details. You can also provide your own ExecutionContext to execute the logic.

52 Chapter 4. Table of contents

tapir documentation, Release 0.x

4.24.3 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See server logic
for details.

4.24.4 Cats Effect typeclasses

Add the following dependency

o

"tapir-vertx-server" % "0.19.0-M6"
% "fs2" % "LatestVersion"

"com.softwaremill.sttp.tapir" %
"com.softwaremill.sttp.shared"

o° o

to use this interpreter with Cats Effect typeclasses.

Then import the object:

import sttp.tapir.server.vertx.VertxCatsServerInterpreter._

This object contains the following methods:

e route[F[_], I, E, O] (e: Endpoint[I, E, O, Fs2Streams[F]]) (logic: I =>
F[Either[E, O]]) returns afunction Router => Route that will create a route matching the endpoint
definition, and attach your logic as an handler. Errors will be recovered automatically.

* routeRecoverErrors[F[_], I, E, O] (e: Endpoint[I, E, O,
Fs2Streams[F]]) (logic: I => F[O]) returns a function Router => Route that will cre-
ate a route matching the endpoint definition, and attach your 1ogic as an handler. You’re providing your own
way to deal with errors happening in the 1ogic function.

Here is simple example which starts HTTP server with one route:

import cats.effect._

import cats.effect.std.Dispatcher

import io.vertx.core.Vertx

import io.vertx.ext.web.Router

import sttp.tapir._

import sttp.tapir.server.vertx.VertxCatsServerInterpreter
import sttp.tapir.server.vertx.VertxCatsServerInterpreter._

object App extends IOApp {
val responseEndpoint: Endpoint[String, Unit, String, Any] =
endpoint
.in("response")
.in(query[String] ("key"))
.out (plainBody [String])

def handler (req: String): IO[Either[Unit, String]] =
IO0.pure (Right (req))

override def run(args: List[String]): IO[ExitCode] = {
Dispatcher [IO]
.flatMap { dispatcher =>

Resource
.make (
IO0.delay {
val vertx = Vertx.vertx()
val server = vertx.createHttpServer ()

(continues on next page)

4.24. Running as a Vert.X server 53

tapir documentation, Release 0.x

(continued from previous page)

val router = Router.router (vertx)
val attach = VertxCatsServerInterpreter[IO] (dispatcher).
—route (responseEndpoint) (handler)
attach (router)
server.requestHandler (router) .1listen (8080)
}.flatMap (_.asF[IO])
) ({ server =>
IO0.delay (server.close) .flatMap(_.asF[IO].void)
})
}

.use(_ => IO.never)

This interpreter also supports streaming using FS2 streams:

import cats.effect._

import cats.effect.std.Dispatcher

import fs2._

import sttp.capabilities.fs2.Fs2Streams

import sttp.tapir._

import sttp.tapir.server.vertx.VertxCatsServerInterpreter

val streamedResponse =
endpoint
.in("stream")
.in(query[Int] ("key"))
.out (streamTextBody (Fs2Streams [I0]) (CodecFormat.TextPlain()))

def dispatcher: Dispatcher[IO] = 27?7

val attach = VertxCatsServerInterpreter (dispatcher) .route (streamedResponse) { key =>
IO0.pure (Right (Stream.chunk (Chunk.array ("Hello world!".getBytes)) .repeatN (key)))

4.24.5 ZIO

Add the following dependency

o

"com.softwaremill.sttp.tapir" %% "tapir-vertx-server" $ "0.19.0-M6"

"com.softwaremill.sttp.shared"

o
°
o o
°

% "zio" % "LatestVersion"

to use this interpreter with ZIO.

Then import the object:

import sttp.tapir.server.vertx.VertxZioServerInterpreter._

This object contains method route [R, I, E, O] (e: Endpoint[I, E, O, ZioStreams]) (logic:
I => ZIO[R, E, O]) which returns a function Router => Route that will create a route maching the end-
point definition, and attach your logic as an handler.

Here is simple example which starts HTTP server with one route:

54 Chapter 4. Table of contents

tapir documentation, Release 0.x

import io.vertx.core.Vertx

import io.vertx.ext.web.Router

import sttp.tapir._

import sttp.tapir.server.vertx.VertxZioServerInterpreter
import sttp.tapir.server.vertx.VertxZioServerInterpreter._
import zio._

object Short extends zio.App {
implicit val runtime = Runtime.default

val responseEndpoint =
endpoint
.in("response")
.in(query[String] ("key"))
.out (plainBody [String])

val attach = VertxZioServerInterpreter () .route (responseEndpoint) { key => UIO.
—succeed (key) }

override def run(args: List([String]): URIO[ZEnv, ExitCode] =
ZManaged.make (ZIO.effect {
val vertx = Vertx.vertx()
val server = vertx.createHttpServer ()
val router = Router.router (vertx)
attach (router)
server.requestHandler (router) .1listen (8080)
} >>= (_.asRIO)) ({ server =>
ZIO.effect (server.close()).flatMap(_.asRIO) .orDie
}) .useForever.as (ExitCode.success) .orDie

This interpreter supports streaming using ZStreams.

4.25 Running as an zio-http server

To expose an endpoint as a zio-http server, first add the following dependency:

"com.softwaremill.sttp.tapir" %% "tapir-zio-http" % "0.19.0-M6"

Now import the object:

import sttp.tapir.server.ziohttp.ZioHttpInterpreter

The ZioHttpInterpreter objects contains methods: toHttp and toHttpRecoverErrors.

The toHt tp method requires the logic of the endpoint to be given as a function of type:

I => RIO[R, Either[E, 0]]

The toHttpRecoverErrors method recovers errors from failed effects, and hence requires that E is a subclass of
Throwable (an exception); it expects a function of type I => RIO[R, O].

For example:

4.25. Running as an zio-http server 55

https://github.com/dream11/zio-http

tapir documentation, Release 0.x

import sttp.tapir._

import sttp.tapir.server.ziohttp.ZioHttpInterpreter

import zhttp.http.{Http, Request, Response}

import zio._

def countCharacters(s: String): RIO[Any, Either[Unit, Int]] =
ZTI0.succeed (Right (s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Any] =
endpoint.in(stringBody) .out (plainBody [Int])

val countCharactersHttp: Http[Any, Throwable, Request, Response[Any, Throwable]] =
ZioHttpInterpreter () .toHttp (countCharactersEndpoint) (countCharacters)

Note that the second argument to t oHt tp is a function with one argument, a tuple of type I. This means that functions
which take multiple arguments need to be converted to a function using a single argument using . tupled:

import sttp.tapir._

import sttp.tapir.server.ziohttp.ZioHttpInterpreter

import zhttp.http.{Http, Request, Response}

import zio._

def logic(s: String, i: Int): RIO[Any, Either[Unit,String]] = 27?7

val anEndpoint: Endpoint|[(String, Int), Unit, String, Any] = 2?7

val anHttp: Http[Any, Throwable, Request, Response[Any, Throwable]] =
ZioHttpInterpreter () .toHttp (anEndpoint) ((logic _) .tupled)

4.25.1 Streaming

The zio-http interpreter accepts streaming bodies of type Stream[Throwable, Byte], as described
by the ZioStreams capability. = Both response bodies and request bodies can be streamed. Usage:
streamBody (ZioStreams) (schema, format).

The capability can be added to the classpath independently of the interpreter through the "com.softwaremill.

[

sttp.shared" %% "zio" dependency.

4.25.2 Configuration

The interpreter can be configured by providing an ZioHttpServerOptions value, see server options for details.

4.25.3 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See server logic
for details.

4.26 Running using the AWS serverless stack

Tapir server endpoints can be packaged and deployed as an AWS Lambda function. To invoke the function, HTTP
requests can be proxied through AWS API Gateway.

To configure API Gateway routes, and the Lambda function, tools like AWS SAM and Terraform can be used, to
automate cloud deployments.

56 Chapter 4. Table of contents

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://aws.amazon.com/serverless/sam/
https://www.terraform.io/

tapir documentation, Release 0.x

For an overview of how this works in more detail, see this blog post.

4.26.1 Serverless interpreters

To implement the Lambda function, a server interpreter is available, which takes tapir endpoints with as-
sociated server logic, and returns an AwsRequest => F[AwsResponse] function. This is used in the
AwsLambdaIORuntime to implement the Lambda loop of reading the next request, computing and sending the
response.

Currently, only an interpreter integrating with cats-effect is available (AwsCatsEffectServerInterpreter).
To use, add the following dependency:

o

"com.softwaremill.sttp.tapir" %% "tapir-aws—-lambda" % "0.19.0-Mo6"

To configure API Gateway and the Lambda function, you can use:
 the AwsSamInterpreter which interprets tapir Endpoints into an AWS SAM template file
* orthe AwsTerraformInterpreter which interprets Endpoints into terraform configuration file.

Add one of the following dependencies:

o

"com.softwaremill.sttp.tapir" %% "tapir—-aws-sam" % "0.19.0-M6"

o

"com.softwaremill.sttp.tapir" %% "tapir-aws-terraform" % "0.19.0-Mo6"

4.26.2 Examples

In our GitHub repository you’ll find a LambdaApiExample handler which uses AwsServerInterpreter to
route a hello endpoint along with SamTemplateExample and TerraformConfigExample which interpret
endpoints to SAM/Terraform configuration. Go ahead and clone tapir project and select project awsExamples
from sbt shell.

Make sure you have AWS command line tools installed.

SAM

To try it out using SAM template you don’t need an AWS account.
* install AWS SAM command line tool

* run assembly task and runMain sttp.tapir.serverless.aws.examples.
SamTemplateExample

* open a terminal and in tapir root directory run sam local start-api —--warm-containers EAGER

That will create template.yaml and start up AWS Api Gateway locally. Hello endpoint will be available under
curl http://127.0.0.1:3000/api/hello. First invocation will take a while but subsequent ones will be
faster since the created container will be reused.

Terraform

To run the example using terraform you will need an AWS account, and an S3 bucket.
* install Terraform

* run assembly task

4.26. Running using the AWS serverless stack 57

https://blog.softwaremill.com/tapir-serverless-a-proof-of-concept-6b8c9de4d396
https://github.com/softwaremill/tapir/tree/master/serverless/aws/examples/src/main/scala/sttp/tapir/serverless/aws/examples
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-command-reference.html
https://learn.hashicorp.com/tutorials/terraform/install-cli

tapir documentation, Release 0.x

e open a terminal in tapir/serverless/aws/examples/target/jvm-2.13 directory. That’s where
the fat jar is saved. You need to upload it into your s3 bucket. Using command line tools: aws s3 cp
tapir—-aws-examples. jar s3://{your-bucket}/{your-key}.

* Run runMain sttp.tapir.serverless.aws.examples.TerraformConfigExample
{your—-aws-region} {your-bucket} {your-key}

* open terminal in tapir root directory, run terraform init and terraform apply

That will create api_gateway.tf. json configuration and deploy Api Gateway and lambda function to AWS.
Terraform will output the url of the created API Gateway which you can call followed by /api/hello path.

To destroy all the created resources run terraform destroy.

4.27 Server options

Each interpreter can be configured using an options object, which includes:

* how to create a file (when receiving a response that is mapped to a file, or when reading a file-mapped multipart
part)

« if, and how to handle exceptions (see error handling)
« if, and how to log requests (see loggin & debugging)
* how to handle decode failures (see error handling)

* additional user-provided interceptors

To use custom server options pass them as an argument to the interpreter’s apply method. For example, for
AkkaHttpServerOptions and AkkaHttpServerInterpreter:

import sttp.tapir.server.interceptor.decodefailure.DecodeFailureHandler
import sttp.tapir.server.akkahttp.AkkaHttpServerOptions
import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter

val customDecodeFailureHandler: DecodeFailureHandler = 2?77

val customServerOptions: AkkaHttpServerOptions = AkkaHttpServerOptions
.customInterceptors
.decodeFailureHandler (customDecodeFailureHandler)

.options

AkkaHttpServerInterpreter (customServerOptions)

4.27.1 Request interceptors
Request interceptors intercept whole request, and are called once for each request. They can provide additional end-
point interceptors, as well as modify the request, or the response.
The following request interceptors are provided by default (and if enabled, called in this order):
* the metrics interceptor, which by default is disabled

e the RejectInterceptor, which specifies what should be done when decoding the request has failed for all
interpreted endpoints. The default is to return a 405 (method not allowed), if there’s at least one decode failure
on the method, and a “no-match” otherwise (which is handled in an intereprter-specific manner)

58 Chapter 4. Table of contents

tapir documentation, Release 0.x

4.27.2 Endpoint interceptors
An EndpointInterceptor allows intercepting the handling of a request by an endpoint, when either the end-
point’s inputs have been decoded successfully, or when decoding has failed.
The following interceptors are used by default, and if enabled, called in this order:
* exception interceptor
* logging interceptor
¢ decode failure handler interceptor

Note that while the request will be passed top-to-bottom, handling of the result will be done in opposite order. E.g., if
the result is a failed effect (an exception), it will first be logged by the logging interceptor, and only later passed to the
exception interceptor.

Using customInterceptors on the options companion object, it is possible to customise the built-in inter-
ceptors, as well as add new ones in-between the default initial (exception, logging) and decode failure intercep-
tors. Customisation can include removing the interceptor altogether. Later, interceptors can be added using .
prependInterceptor and .appendInterceptor.

4.28 Server logic

The logic that should be run when an endpoint is invoked can be passed when interpreting the endpoint as a server, and
converting to a server-implementation-specific route. However, there’s also the option to define an endpoint coupled
with the server logic - either given entirely or gradually, in parts. This might make it easier to work with endpoints
and their collections in a server setting.

4.28.1 Defining an endpoint together with the server logic

It’s possible to combine an endpoint description with the server logic in a single object, ServerEndpoint [I, E,
O, S, F1]. Such an endpoint contains not only an endpoint of type Endpoint [I, E, O, S], butalso a logic
function I => F[Either[E, O]], for some effect F.

The book example can be more concisely written as follows:

import sttp.tapir._

import sttp.tapir.server._

import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter
import scala.concurrent.Future

import akka.http.scaladsl.server.Route

val countCharactersServerEndpoint: ServerEndpoint[String, Unit, Int, Any, Future] =
endpoint.in(stringBody) .out (plainBody[Int]) .serverLogic { s =>
Future.successful [Either[Unit, Int]] (Right (s.length))
}

val countCharactersRoute: Route =
AkkaHttpServerInterpreter () .toRoute (countCharactersServerEndpoint)

A ServerEndpoint can then be converted to a route using . toRoute/.toRoutes methods (without any addi-
tional parameters; the exact method name depends on the server interpreter), or to documentation.

Moreover, a list of server endpoints can be converted to routes or documentation as well:

4.28. Server logic 59

tapir documentation, Release 0.x

import sttp.tapir._

import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter
import scala.concurrent.Future

import akka.http.scaladsl.server.Route

val endpointl = endpoint.in("hello") .out (stringBody)
.serverLogic { _ => Future.successful [Either[Unit, String]] (Right ("world")) }

val endpoint2 = endpoint.in("ping") .out (stringBody)
.serverLogic { _ => Future.successful [Either[Unit, String]] (Right ("pong")) }

val route: Route = AkkaHttpServerInterpreter ().toRoute (List (endpointl, endpoint2))

Note that when dealing with endpoints which have multiple input parameters, the server logic function is a function
of a single argument, which is a tuple; hence you’ll need to pattern-match using case to extract the parameters:

import sttp.tapir._
import scala.concurrent.Future

val echoEndpoint = endpoint
.in(query[Int] ("count"))
.in(stringBody)
.out (stringBody)
.serverLogic { case (count, body) =>
Future.successful [Either[Unit, String]] (Right (body % count))

Recovering errors from failed effects

If your error type is an exception (extends Throwable), and if errors that occur in the server logic are represented as
failed effects, you can use a variant of the methods above, which extract the error from the failed effect, and respond
with the error output appropriately.

This can be done with the serverLogicRecoverErrors (f: I => F[0]) method. Note that the E type
parameter isn’t directly present here; however, the method also contains a requirement that E is an exception, and will
only recover errors which are subtypes of E. Any others will be propagated without changes.

For example:

import sttp.tapir._
import scala.concurrent.Future

case class MyError (msg: String) extends Exception
val testEndpoint = endpoint

.in(query[Boolean] ("fail"))

.errorOut (stringBody.map (MyError) (_.msg))

.out (stringBody)

.serverLogicRecoverErrors { fail =>

if (fail) {
Future.successful ("OK") // note: no Right () wrapper
} else {
Future.failed(new MyError ("Not OK")) // no Left () wrapper, a failed future

60 Chapter 4. Table of contents

tapir documentation, Release 0.x

4.28.2 Extracting common route logic

Quite often, especially for authentication, some part of the route logic is shared among multiple endpoints. However,
these functions don’t compose in a straightforward way, as authentication usually operates on a single input, which is
only a part of the whole logic’s input. That’s why there are two options for providing the server logic in parts.

Defining an extendable, base endpoint with partial server logic

First, you might want to define a base endpoint, with some part of the server logic already defined, and later extend it
with additional inputs/outputs, and successive logic parts.

When using this method, note that the error type must be fully defined upfront, and cannot be extended later. That’s
because all of the partial logic functions can return either an error (of the given type), or a partial result.

To define partial logic for the inputs defined so far, you should use the serverLogicForCurrent method on an
endpoint. This accepts a method, £: I => F[Either[E, U]], which given the entire (current) input defined
so far, returns either an error, or a partial result.

For example, we can create a partial server endpoint given an authentication function, and an endpoint describing the
authentication inputs:

import sttp.tapir._
import sttp.tapir.server._
import scala.concurrent.Future

implicit val ec = scala.concurrent.ExecutionContext.global

case class User (name: String)

def auth(token: String): Future[Either[Int, User]] = Future ({
if (token == "secret") Right (User ("Spock"))
else Left (1001) // error code

val secureEndpoint: PartialServerEndpoint [String, User, Unit, Int, Unit, Any, Future]
—= endpoint

.in(header[String] ("X-AUTH-TOKEN"))

.errorOut (plainBody [Int])

.serverLogicForCurrent (auth)

The result is a value of type PartialServerEndpoint, which can be extended with further inputs and outputs,
just as a normal endpoint (except for error outputs, which are fixed).

Successive logic parts (again consuming the entire input defined so far, and producing another partial result) can be
given by calling serverLogicForCurrent again. The logic can be completed - given a tuple of partial results,
and unconsumed inputs - using the serverLogic method:

val secureHelloWorldlWithLogic = secureEndpoint.get
.in("hellol™)
.in(query[String] ("salutation"))
.out (stringBody)
.serverLogic { case (user, salutation) =>
Future.successful [Either[Int, String]] (Right (s" salutation/, user.name/!"))

Once the server logic is complete, a ServerEndpoint is returned, which can be then interpreted as a server.

The methods mentioned also have variants which recover errors from failed effects (as described above), using
serverLogicForCurrentRecoverErrors and serverLogicRecoverErrors.

4.28. Server logic 61

tapir documentation, Release 0.x

Providing server logic in parts, for an already defined endpoint

Secondly, you might already have the entire endpoint defined upfront (e.g. in a separate module, which doesn’t know
anything about the server logic), and would like to provide the server logic in parts.

This can be done using the serverLogicPart method, which takes a function of type f: T =>
F[Either[E, U]] as a parameter. Here T is some prefix of the endpoint’s input I. The function then consumes
some part of the input, and produces an error, or a partial result.

Unlike previously, here the endpoint is considered complete, and cannot be later extended: no additional inputs or
outputs can be defined.

Note: Note that the partial logic functions should be fully typed, to help with inference. It might not be possible for
the compiler to infer, which part of the input should be consumed.

For example, if we have an endpoint:

import sttp.tapir._

val secureHelloWorld2: Endpoint[(String, String), Int, String, Any] = endpoint
.in(header[String] ("X-AUTH-TOKEN"))
.errorOut (plainBody [Int])

.get
.in("hello2")
.in(query[String] ("salutation"))

.out (stringBody)

We can provide the server logic in parts (using the same auth method as above):

import scala.concurrent.Future

case class User (name: String)
def auth (token: String): Future[Either[Int, User]] = 2727

val secureHelloWorld2WithLogic = secureHelloWorld2
.serverLogicPart (auth)
.andThen { case (user, salutation) =>
Future.successful [Either[Int, String]] (Right (s"Ssalutation, user.name /! "))

Here, we first define a single part using serverLogicPart, and then complete the logic (consuming the remaining
inputs) using andThen. The result is, like previously, a ServerEndpoint, which can be interpreted as a server.

Multiple parts can be provided using andThenPart invocations (consuming successive input parts). There are
also variants of the methods, which recover errors from failed effects: serverLogicPartRecoverErrors,
andThenRecoverErrors and andThenPartRecoverErrors.

4.28.3 Status codes

By default, successful responses are returned with the 200 OK status code, and errors with 400 Bad Request.
However, this can be customised by specifying how an output maps to the status code.

62 Chapter 4. Table of contents

tapir documentation, Release 0.x

4.29 Observability

Metrics collection is possible by creating Metric instances and adding them to server options via
MetricsInterceptor. Certain endpoints can be ignored by adding their definitions to ignoreEndpoints
list.

Metric wraps an aggregation object (like a counter or gauge), and needs to implement the onRequest function,
which returns an EndpointMetric instance.

Metric.onRequest is used to create the proper metric description. Any additional data might be gathered there,
like getting current timestamp and passing it down to EndpointMet ric callbacks which are then executed in certain
points of request processing.

There are three callbacks in EndpointMetric:

1. onEndpointRequest - called after a request matches an endpoint (inputs are successfully decoded), or when
decoding inputs fails, but a downstream interceptor provides a response.

2. onResponse - called after response is assembled. Note that the response body might be lazily produced. To
properly observe end-of-body, use the provided BodyListener.

3. onException - called after exception is thrown (in underlying streamed body, and/or on any other exception
when there’s no default response)

4.29.1 Labels

By default, request metrics are labeled by path and method. Response labels are additionally labelled by status code
group. For example GET endpoint like http://h:p/api/persons?name=Mike returning 200 response will be
labeled as path="api/persons”, method="GET", status="2xx". Query params are omitted by default,
but it’s possible to include them as shown in example below.

If the path contains captures, the label will include the path capture name instead of the actual value, e.g. api/
persons/{name}.

Labels for default metrics can be customized, any attribute from Endpoint, ServerRequest and
ServerResponse could be used, for example:

import sttp.tapir.metrics.MetricLabels

val labels = MetricLabels (
forRequest = Seq(

"path" -> { case (ep, _) => ep.renderPathTemplate() },
"protocol™ -> { case (_, req) => reg.protocol }

)I

forResponse = Seq()

4.29.2 Prometheus metrics

Add the following dependency:

)

"com.softwaremill.sttp.tapir" %% "tapir-prometheus-metrics" % "0.19.0-Mo6"

PrometheusMetrics encapsulates CollectorReqgistry and Metric instances. It provides several ready to
use metrics as well as an endpoint definition to read the metrics & expose them to the Prometheus server.

For example, using AkkaServerInterpeter:

4.29. Observability 63

tapir documentation, Release 0.x

import akka.http.scaladsl.server.Route

import io.prometheus.client.CollectorRegistry

import sttp.monad.FutureMonad

import sttp.tapir.metrics.prometheus.PrometheusMetrics

import sttp.tapir.server.akkahttp.{AkkaHttpServerInterpreter, AkkaHttpServerOptions}

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future

implicit val monad: FutureMonad = new FutureMonad/()

val prometheusMetrics = PrometheusMetrics|[Future] ("tapir", CollectorRegistry.
—defaultRegistry)

.withRequestsTotal ()

.withResponsesTotal ()

.withResponsesDuration ()

val serverOptions: AkkaHttpServerOptions = AkkaHttpServerOptions
.customInterceptors
.metricsInterceptor (prometheusMetrics.metricsInterceptor())
.options

val routes: Route = AkkaHttpServerInterpreter (serverOptions).

—toRoute (prometheusMetrics.metricsEndpoint)

Custom metrics

Also, custom metric creation is possible and attaching it to PrometheusMetrics, for example:

import sttp.tapir.metrics.prometheus.PrometheusMetrics
import sttp.tapir.metrics.{EndpointMetric, Metric}
import io.prometheus.client. {CollectorRegistry, Counter}
import scala.concurrent.Future

// Metric for counting responses labeled by path, method and status code
val responsesTotal = Metric[Future, Counter] (
Counter
.build()
.namespace ("tapir")
.name ("responses_total")
.help ("HTTP responses")
.labelNames ("path", "method", "status")
.register (CollectorRegistry.defaultRegistry),

onRequest = { (req, counter, _) =>
Future.successful (
EndpointMetric ()
.onResponse { (ep, res) =>

Future.successful {
val path = ep.renderPathTemplate ()
val method = reqg.method.method
val status = res.code.toString()
counter.labels (path, method, status).inc()

(continues on next page)

64 Chapter 4. Table of contents

tapir documentation, Release 0.x

(continued from previous page)

val prometheusMetrics = PrometheusMetrics|[Future] ("tapir", CollectorRegistry.
—defaultRegistry) .withCustom(responsesTotal)

4.29.3 OpenTelemetry metrics

Add the following dependency:

"com.softwaremill.sttp.tapir" %% "tapir-opentelemetry-metrics"™ % "0.19.0-M6"

OpenTelemetry metrics are vendor-agnostic and can be exported using one of exporters from SDK.

OpenTelemetryMetrics encapsulates metric instances and needs a MetricProvider from OpenTelemetry
SDK to create default metrics, simply:

import sttp.tapir.metrics.opentelemetry.OpenTelemetryMetrics
import io.opentelemetry.api.metrics.MeterProvider
import scala.concurrent.Future

val provider: MeterProvider = 27?7

val metrics = OpenTelemetryMetrics [Future] (provider, "your-app-instrumentation”, "1.0.
—0")

.withRequestsTotal ()

.withRequestsActive ()

.withResponsesTotal ()

.withResponsesDuration ()

val metricsInterceptor = metrics.metricsInterceptor() // add me to your server options

4.30 Error handling

Error handling in tapir is divided into three areas:
1. Error outputs: defined per-endpoint, used for errors handled by the business logic
2. Failed effects: exceptions which are not handled by the server logic (corresponds to 5xx responses)

3. Decode failures: format errors, when the input values can’t be decoded (corresponds to 4xx responses, or trying
another endpoint)

While 1. is specific to an endpoint, handlers for 2. and 3. are typically the same for multiple endpoints, and are
specified as part of the server’s interpreter options.

4.30.1 Error outputs

Each endpoint can contain dedicated error outputs, in addition to outputs which are used in case of success. The
business logic can then return either an error value, or a success value. Any business-logic-level errors should be
signalled this way. This can include validation, failure of downstream services, or inability to serve the request at that
time.

If the business logic signals errors as exceptions, some or all can be recovered from and mapped to an error value. For
example:

4.30. Error handling 65

https://github.com/open-telemetry/opentelemetry-java/tree/main/exporters
options

tapir documentation, Release 0.x

import sttp.tapir._

import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter
import scala.concurrent.Future

import scala.util._

implicit val ec = scala.concurrent.ExecutionContext.global

type ErrorInfo = String

def logic(s: String): Future[Int] = ?27?7?

def handleErrors[T] (f: Future[T]): Future[Either[ErrorInfo, T]] =

f.transform {
case Success (v) => Success (Right (v))
case Failure(e) =>
println (s"Exception when running endpoint logic: Se")
Success (Left (e.getMessage))

AkkaHttpServerInterpreter () .toRoute (
endpoint
.errorOut (plainBody [ErrorInfo])
.out (plainBody[Int])
.in(query([String] ("name"))) {
(logic _) .andThen (handleErrors)

In the above example, errors are represented as St rings (aliased to ErrorInfo for readability). When the logic
completes successfully an Int is returned. Any exceptions that are raised are logged, and represented as a value of
type ErrorInfo.

Following the convention, the left side of the Either [ErrorInfo, T] represents an error, and the right side
success.

Alternatively, errors can be recovered from failed effects and mapped to the error output - provided that the E type in
the endpoint description is itself a subclass of exception. This can be done using the toRouteRecoverErrors
method (or similar for other interpreters).

4.30.2 Failed effects: unhandled exceptions

If the logic function, which is passed to the server interpreter, fails (i.e. throws an exception, which results in a failed
Future or I0/Task), this will be handled by the logging and exception interceptors. By default, an ERROR will be
logged, and an 500 InternalServerError returned.

4.30.3 Decode failures

Quite often user input will be malformed and decoding of the request will fail. Should the request be completed with
a 400 Bad Request response, or should the request be forwarded to another endpoint? By default, tapir follows
OpenAPI conventions, that an endpoint is uniquely identified by the method and served path. That’s why:

* a 405 Method Not Allowed is returned if multiple endpoints have been interpreted, and for at least
one of them the path matched, but the method didn’t. We assume that all endpoints for that path have
been given to the interpreter, hence the response. This behavior can be customised or turned off using the
RejectInterceptor

* an “endpoint doesn’t match” result is returned if the request method or path doesn’t match. The http library
should attempt to serve this request with the next endpoint. The path doesn’t match if a path segment is missing,
there’s a constant value mismatch or a decoding error (e.g. parsing a segment to an Int fails)

66 Chapter 4. Table of contents

tapir documentation, Release 0.x

* otherwise, we assume that this is the correct endpoint to serve the request, but the parameters are somehow
malformed. A 400 Bad Request response is returned if a query parameter, header or body causes any
decode failure, or if the decoding a path capture causes a validation error.

The behavior described in the latter two points can be customised by providing a custom sttp.tapir.server.
DecodeFailureHandler when creating the server options. This handler, basing on the request, failing input and
failure description can decide, whether to return a “no match” or a specific response.

Only the first failure encountered for a specific endpoint is passed to the DecodeFailureHandler. Inputs are
decoded in the following order: path, method, query, header, body.

Note that the decode failure handler is used only for failures that occur during decoding of path, query, body and
header parameters - while invoking Codec.decode. It does not handle any failures or exceptions that occur when
invoking the logic of the endpoint.

Default failure handler

The default decode failure handler is a case class, consisting of functions which decide whether to respond with an
error or return a ‘“no match”, create error messages and create the response. Parts of the default behavior can be
swapped, e.g. to return responses in a different format (other than plain text), or customise the error messages.

The default decode failure handler also has the option to return a 400 Bad Request, instead of a no-match (ul-
timately leading to a 404 Not Found), when the “shape” of the path matches (that is, the number of segments in
the request and endpoint’s paths are the same), but when decoding some part of the path ends in an error. See the
badRequestOnPathErrorIfPathShapeMatches in ServerDefaults.

4.30.4 Customising how error messages are rendered

To return error responses in a different format (other than plain text), you can customise both the exception & decode
failure handlers individually, or use the CustomInterceptors.errorOutput method which customises the
default ones for you.

We’ll need to provide both the endpoint output which should be used for error messages, along with the output’s value:

import sttp.tapir._

import sttp.tapir.server.interceptor.ValuedEndpointOutput
import sttp.tapir.server.akkahttp.AkkaHttpServerOptions
import sttp.tapir.generic.auto._

import sttp.tapir.json.circe._

import io.circe.generic.auto._

case class MyFailure (msg: String)
def myFailureResponse (m: String): ValuedEndpointOutput[_] =
ValuedEndpointOutput (jsonBody [MyFailure], MyFailure (m))

val myServerOptions: AkkaHttpServerOptions = AkkaHttpServerOptions
.customlInterceptors
.errorOutput (myFailureResponse)
.options

If you want to customise anything beyond the rendering of the error message, or use non-default implementations of
the exception handler / decode failure handler, you’ll still have to customise each by hand.

4.30. Error handling 67

tapir documentation, Release 0.x

4.31 Logging & debugging

When dealing with multiple endpoints, how to find out which endpoint handled a request, or why an endpoint didn’t
handle a request?

For this purpose, tapir provides optional logging. The logging options (and messages) can be customised by providing
an instance of the ServerLog class, which is part of server options.

The default implementation, DefaultServerLog, can be customised using the following flags:

1. logWhenHandled: when a request is handled by an endpoint, or when the inputs can’t be decoded, and the
decode failure maps to a response (default: t rue, DEBUG log)

2. logAllDecodeFailures: when the inputs can’t be decoded, and the decode failure doesn’t map to a re-
sponse (the next endpoint will be tried; default: false, DEBUG log)

3. logExceptions: when there’s an exception during evaluation of the server logic (default: true, ERROR
log)

Logging all decode failures (2) might be helpful when debugging, but can also produce a large amount of logs, hence
it’s disabled by default.

Even if logging for a particular category (as described above) is set to t rue, normal logger rules apply - if you don’t
see the logs, please verify your logging levels for the appropriate packages.

4.32 Using as an sttp client

Add the dependency:

"com.softwaremill.sttp.tapir" %% "tapir-sttp-client™ % "0.19.0-M6"

To make requests using an endpoint definition using the sttp client, import:

’import sttp.tapir.client.sttp.SttpClientInterpreter

This objects contains two methods:

* toRequestUnsafe (Endpoint, Uri): given the base URI returns a function, which might throw an
exception if decoding of the result fails

’I => Request [Either[E, O], Any]

* toRequest (Endpoint, Uri): given the base URI returns a function, which represents decoding errors as
the DecodeResult class

’I => Request [DecodeResult [Either[E, O]], Any]

Note that the returned functions have one-argument: the input values of end endpoint. This might be a single type, a
tuple, or a case class, depending on the endpoint description.

After providing the input parameters, a description of the request to be made is returned, with the input value encoded
as appropriate request parameters: path, query, headers and body. This can be further customised and sent using
any sttp backend. The response will then contain the decoded error or success values (note that this can be the body
enriched with data from headers/status code).

See the runnable example for example usage.

68 Chapter 4. Table of contents

https://github.com/softwaremill/sttp
https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/BooksExample.scala

tapir documentation, Release 0.x

4.32.1 Web sockets

To interpret a web socket endpoint, an additional streams-specific import is needed, so that the interpreter can convert
sttp’s WebSocket instance into a pipe. This logic is looked up via the WebSocketToPipe implicit.

The required imports are as follows:

import sttp.tapir.client.sttp.ws.akkahttp._ // for akka-streams // for akka-streams
import sttp.tapir.client.sttp.ws.fs2._ // for fs2

No additional dependencies are needed, as both of the above implementations are included in the main interpreter,]
with dependencies on akka-streams and fs2 being marked as optional (hence these are not transitive).

4.32.2 Scala.JS

In this case add the following dependencies (note the $%% instead of the usual $%):

"com.softwaremill.sttp.tapir" %$%% "tapir-sttp-client™ % "0.19.0-M6"

%% java-time" % "2.2.0" // implementations of java.time,,

"io.github.cquiroz" %%% "scala-
—classes for Scala.JS

The client interpreter also supports Scala.JS, the request must then be sent using the sttp client Scala.JS Fetch backend.

You can check the SttpClientTest s for a working example.

4.33 Using as a Play client

Add the dependency:

"com.softwaremill.sttp.tapir" %% "tapir-play-client™ % "0.19.0-M6"

To make requests using an endpoint definition using the play client, import:

’import sttp.tapir.client.play.PlayClientInterpreter

This objects contains two methods:

* toRequestUnsafe (Endpoint, String): given the base URI returns a function, which will generate a
request and a response parser which might throw an exception when decoding of the result fails

’I => (StandaloneWSRequest, StandaloneWSResponse => Either[E, O])

* toRequest (Endpoint, String): given the base URI returns a function, which will generate a request
and a response parser which represents decoding errors as the DecodeResult class

’I => (StandaloneWSRequest, StandaloneWSResponse => DecodeResult [Either[E, O]])

Note that the returned functions have one-argument: the input values of end endpoint. This might be a single type, a
tuple, or a case class, depending on the endpoint description.

After providing the input parameters, the two following are returned:

* a description of the request to be made, with the input value encoded as appropriate request parameters: path,
query, headers and body. This can be further customised and sent using regular Play methods.

4.33. Using as a Play client 69

https://www.scala-js.org/doc/project/dependencies.html
https://sttp.softwaremill.com/en/latest/backends/javascript/fetch.html
https://github.com/softwaremill/tapir/blob/master/client/sttp-client/src/test/scalajs/sttp/tapir/client/sttp/SttpClientTests.scala
https://github.com/playframework/play-ws

tapir documentation, Release 0.x

* aresponse parser to be applied to the response got after executing the request. The result will then contain the
decoded error or success values (note that this can be the body enriched with data from headers/status code).

Example:

import sttp.tapir._
import sttp.tapir.client.play.PlayClientInterpreter
import sttp.capabilities.akka.AkkaStreams

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future

import play.api.libs.ws.StandaloneWSClient

def example[I, E, O, R >: AkkaStreams] (implicit wsClient: StandaloneWSClient) {

val e: Endpoint[I, E, O, R] = 2?7
val inputArgs: I = 2727
val (req, responseParser) = PlayClientInterpreter ()

.toRequestUnsafe (e, s"http://localhost:9000")
.apply (inputArgs)

val result: Future[Either[E, O]] = reqg
.execute ()
.map (responsebParser)

4.33.1 Limitations

Multipart requests are not supported.
Streaming capabilities:

* only AkkaStreams is supported

4.34 Using as an http4s client

Add the dependency:

o

"com.softwaremill.sttp.tapir" %% "tapir-httpds-client"™ % "0.19.0-M6"

To interpret an endpoint definition as an org.http4s.Request [F], import:

’import sttp.tapir.client .httpd4s.Httpd4sClientInterpreter

This objects contains two methods:

* toRequestUnsafe (Endpoint, Option[String]): given the optional base URI, returns a function
which generates a request and a response parser from endpoint inputs. Response parser throws an exception if
decoding of the result fails.

I => (org.httpd4s.Request[F], org.http4s.Response[F] => F[Either[E, O]])

* toRequest (Endpoint, Option[String]): given the optional base URI, returns a function which
generates a request and a response parser from endpoint inputs. Response parser returns an instance of
DecodeResult which contains the decoded response body or error details.

70 Chapter 4. Table of contents

tapir documentation, Release 0.x

I => (org.http4s.Request[F], org.httpd4s.Response[F] => F[DecodeResult [Either[E,
=0]11)

Note that the returned functions have one-argument: the input values of end endpoint. This might be a single type, a
tuple, or a case class, depending on the endpoint description.

After providing the input parameters, the following values are returned:

* Aninstance of org.http4s.Request [F] with the input value encoded as appropriate request parameters:
path, query, headers and body. The request can be further customised and sent using an http4s client, or run
against org.http4s.HttpRoutes [F].

* A response parser to be applied to the response received after executing the request. The result will then contain
the decoded error or success values (note that this can be the body enriched with data from headers/status code).

See the runnable example for example usage.

4.34.1 Limitations

* Multipart requests are not supported yet.
* WebSockets are not supported yet.
» Streaming capabilities:

— only Fs2Streams are supported at the moment.

4.35 Generating OpenAPI documentation

To use, add the following dependencies:

o

"com.softwaremill.sttp.tapir" %% "tapir-openapi-docs"™ % "0.19.0-M6"
"com.softwaremill.sttp.tapir" %% "tapir-openapi-circe-yaml" % "0.19.0-M6"

Tapir contains a case class-based model of the openapi data structures in the openapi/openapi-model subproject
(the model is independent from all other tapir modules and can be used stand-alone).

An endpoint can be converted to an instance of the model by importing the sttp.tapir.docs.openapi.
OpenAPIDocsInterpreter object:

import sttp.tapir._
import sttp.tapir.openapi.OpenAPI
import sttp.tapir.docs.openapi.OpenAPIDocsInterpreter

val booksListing = endpoint.in(path[String] ("bookId"))

val docs: OpenAPI = OpenAPIDocsInterpreter () .toOpenAPI (booksListing, "My Bookshop",
<"1.0")

Such a model can then be refined, by adding details which are not auto-generated. Working with a deeply nested case
class structure such as the OpenAPT one can be made easier by using a lens library, e.g. Quicklens.

The documentation is generated in a large part basing on schemas. Schemas can be automatically derived and cus-
tomised.

Quite often, you’ll need to define the servers, through which the API can be reached. To do this, you can modify the
returned OpenAPT case class either directly or by using a helper method:

4.35. Generating OpenAPI documentation 71

https://github.com/softwaremill/tapir/blob/master/examples/src/main/scala/sttp/tapir/examples/Http4sClientExample.scala
https://github.com/adamw/quicklens
endpoint/codecs.md#schemas

tapir documentation, Release 0.x

import sttp.tapir.openapi.Server

val docsWithServers: OpenAPI = OpenAPIDocsInterpreter ().toOpenAPI (booksListing, "My,
—Bookshop", "1.0")

.servers (List (Server ("https://api.example.com/v1") .description ("Production server
=")))

Multiple endpoints can be converted to an OpenAP I instance by calling the method on a list of endpoints:

OpenAPIDocsInterpreter () .toOpenAPTI (List (addBook, booksListing, booksListingByGenre),
—"My Bookshop", "1.0")

The openapi case classes can then be serialised to YAML using Circe:

import sttp.tapir.openapi.circe.yaml._

println(docs.toYaml)

Or to JSON:

import io.circe.Printer
import io.circe.syntax._
import sttp.tapir.openapi.circe._

println (Printer.spaces2.print (docs.asJson))

4.35.1 Options

Options can be customised by providing an instance of OpenAPIDocsOptions to the interpreter:

e operationIdGenerator: each endpoint corresponds to an operation in the OpenAPI format and should
have a unique operation id. By default, the name of endpoint is used as the operation id, and if this is not
available, the operation id is auto-generated by concatenating (using camel-case) the request method and path.

* defaultDecodeFailureOutput: if an endpoint does not define a Bad Request response in errorOut,
tapir will try to guess if decoding of inputs may fail, and add a 400 response if necessary. You can override this
option to customize the mapping of endpoint’s inputs to a default error response. If you’d like to disable this
feature, just provide a function that always returns None:

OpenAPIDocsOptions.default.copy (defaultDecodeFailureOutput = _ => None)

4.35.2 Inlined and referenced schemas
All named schemas (that is, schemas which have the Schema . name property defined) will be referenced at point of

use, and their definitions will be part of the components section. If you’d like a schema to be inlined, instead of
referenced, modify the schema removing the name.

4.35.3 OpenAPI Specification Extensions

It’s possible to extend specification with extensions. There are . docsExtension methods available on Input/Output
parameters and on endpoint:

72 Chapter 4. Table of contents

https://circe.github.io/circe/
https://swagger.io/docs/specification/openapi-extensions/

tapir documentation, Release 0.x

import sttp.tapir._

import sttp.tapir.json.circe._

import sttp.tapir.generic.auto._
import sttp.tapir.openapi._

import sttp.tapir.openapi.circe._
import sttp.tapir.openapi.circe.yaml._
import io.circe.generic.auto._

case class FruitAmount (fruit: String, amount: Int)
case class MyExtension(string: String, int: Int)

val sampleEndpoint =
endpoint.post

.in("path-hello" / path[String] ("world") .docsExtension ("x-path", 22))
.in(query[String] ("hi") .docsExtension ("x—query", 33))
.in(jsonBody [FruitAmount] .docsExtension ("x-request", MyExtension("a", 1)))
.out (jsonBody [FruitAmount] .docsExtension ("x-response"”, List ("array-0", "array-1

— ")) .docsExtension ("x-response”, "foo"))
.errorOut (stringBody.docsExtension ("x—-error", "error—-extension"))
.docsExtension ("x-endpoint-level-string", "world")
.docsExtension ("x-endpoint—-level-int", 11)
.docsExtension ("x-endpoint-obj", MyExtension ("42.42", 42))

val rootExtensions = List (
DocsExtension.of ("x-root-bool", true),
DocsExtension.of ("x-root-1ist", List (1, 2, 4))

val openAPIYaml = OpenAPIDocsInterpreter().toOpenAPI (sampleEndpoint, Info("title", "1.
—~0"), rootExtensions).toYaml

However, to add extensions to other unusual places (like, License or Server, etc.) you should modify the
OpenAPT object manually or using f.e. Quicklens

4.35.4 Exposing OpenAPI documentation

Exposing the OpenAPI can be done using Swagger Ul or Redoc. The modules tapir-swagger-ui and
tapir-redoc contain server endpoint definitions, which given the documentation in yaml format, will expose it
using the given context path. To use, add as a dependency either:

o

"tapir-swagger-ui" % "0.19.0-M6"
"tapir-redoc" % "0.19.0-M6"

"com.softwaremill.sttp.tapir"
"com.softwaremill.sttp.tapir"

oo
c o
o
o

Then, you’ll need to pass the server endpoints to your server interpreter. For example, using akka-http:

import sttp.tapir._

import sttp.tapir.docs.openapi.OpenAPIDocsInterpreter
import sttp.tapir.openapi.circe.yaml._

import sttp.tapir.server.akkahttp.AkkaHttpServerInterpreter
import sttp.tapir.swagger.SwaggerUI

import scala.concurrent.Future

val myEndpoints: Seq[Endpoint[_, _, _, _1] = 2727
val docsAsYaml: String = OpenAPIDocsInterpreter () .toOpenAPI (myEndpoints, "My App", "1.
—U™m).toYaml (continues on next page)

4.35. Generating OpenAPI documentation 73

https://github.com/softwaremill/quicklens
https://swagger.io/tools/swagger-ui/
https://github.com/Redocly/redoc

tapir documentation, Release 0.x

(continued from previous page)

// add to your akka routes
val swaggerUIRoute = AkkaHttpServerInterpreter().
—toRoute (SwaggerUI [Future] (docsAsYaml))

Using with sbt-assembly

The tapir-swagger-ui modules rely on a file in the META-INF directory tree, to determine the version of
the Swagger UL. You need to take additional measures if you package your application with sbt-assembly be-
cause the default merge strategy of the assembly task discards most artifacts in that directory. To avoid a
NullPointerException, you need to include the following file explicitly:

assemblyMergeStrategy in assembly := ({
case PathList ("META-INF", "maven", "org.webjars", "swagger-ui", "pom.properties") =>
MergeStrategy.singleOrError
case x =>
val oldStrategy = (assemblyMergeStrategy in assembly) .value
oldStrategy (x)

4.36 Generating AsyncAPI documentation

To use, add the following dependencies:

o

"com.softwaremill.sttp.tapir" "tapir—-asyncapi-docs" % "0.19.0-M6"

o)

"com.softwaremill.sttp.tapir" %% "tapir-asyncapi-circe-yaml" % "0.19.0-M6"

Tapir contains a case class-based model of the asyncapi data structures in the asyncapi/asyncapi-model sub-
project (the model is independent from all other tapir modules and can be used stand-alone).

An endpoint can be converted to an instance of the model by using the sttp.tapir.docs.asyncapi.
AsyncAPIInterpreter object:

import sttp.capabilities.akka.AkkaStreams

import sttp.tapir._

import sttp.tapir.asyncapi.AsyncAPI

import sttp.tapir.docs.asyncapi.AsyncAPIInterpreter
import sttp.tapir.generic.auto._

import sttp.tapir.json.circe._

import io.circe.generic.auto._

case class Response (msg: String, count: Int)
val echoWS = endpoint.out (

webSocketBody[String, CodecFormat.TextPlain, Response, CodecFormat.
—~Json] (AkkaStreams))

val docs: AsyncAPI = AsyncAPIInterpreter () .toAsyncAPI (echoWS, "Echo web socket", "1.0

;}Yl)

Such a model can then be refined, by adding details which are not auto-generated. Working with a deeply nested case
class structure such as the AsyncAPT one can be made easier by using a lens library, e.g. Quicklens.

74 Chapter 4. Table of contents

https://github.com/sbt/sbt-assembly
https://github.com/adamw/quicklens

tapir documentation, Release 0.x

The documentation is generated in a large part basing on schemas. Schemas can be automatically derived and cus-
tomised.

Quite often, you’ll need to define the servers, through which the API can be reached. Any servers provided to the
.toAsyncAPI invocation will be supplemented with security requirements, as specified by the endpoints:

import sttp.tapir.asyncapi.Server

val docsWithServers: AsyncAPI = AsyncAPIInterpreter () .toAsyncAPI (
echoWs,
"Echo web socket",
"1.0",
List ("production" -> Server ("api.example.com", "wss"))

Servers can also be later added through methods on the AsyncAPT object.
Multiple endpoints can be converted to an AsyncAP T instance by calling the method using a list of endpoints.

The asyncapi case classes can then be serialised, either to JSON or YAML using Circe:

import sttp.tapir.asyncapi.circe.yaml._

println(docs.toYaml)

4.36.1 Options

Options can be customised by providing an instance of AsyncAPIDocsOptions to the interpreter:

* subscribeOperationId: basing on the endpoint’s path and the entire endpoint, determines the id of the
subscribe operation. This can be later used by code generators as the name of the method to receive messages
from the socket.

* publishOperationId: as above, but for publishing (sending messages to the web socket).

4.36.2 Inlined and referenced schemas
All named schemas (that is, schemas which have the Schema . name property defined) will be referenced at point of

use, and their definitions will be part of the components section. If you’d like a schema to be inlined, instead of
referenced, modify the schema removing the name.

4.36.3 AsyncAPI Specification Extensions
AsyncAPI supports adding extensions as well as OpenAPI. There is docsExtension method available on pa-
rameters and endpoints. There are requestsDocsExtension and responsesDocsExtension methods on

websocketBody. Take a look at OpenAPI Specification Extensions section of documentation to get a feeling on
how to use it.

4.36.4 Exposing AsyncAPI documentation

AsyncAPI documentation can be exposed through the AsyncAPI playground.

4.36. Generating AsyncAPI documentation 75

endpoint/codecs.md#schemas
endpoint/customtypes.md#schema-derivation
endpoint/customtypes.md#schema-derivation
https://circe.github.io/circe/
https://www.asyncapi.com/docs/specifications/2.0.0#specificationExtensions
https://playground.asyncapi.io

tapir documentation, Release 0.x

4.37 Testing

4.37.1 White box testing

If you are unit testing your application you should stub all external services.

If you are using sttp client to send HTTP requests, and if the externals apis, which yours application consumes, are
described using tapir, you can create a stub of the service by converting endpoints to SttpBackendStub (see the
sttp documentation for details on how the stub works).

Add the dependency:

[}

"com.softwaremill.sttp.tapir" %% "tapir-sttp-stub-server" % "0.19.0-M6"

And the following imports:

import sttp.client3.testing.SttpBackendStub
import sttp.tapir.server.stub._

Given the following endpoint:

import sttp.tapir._

import sttp.tapir.generic.auto._
import sttp.tapir.json.circe._
import io.circe.generic.auto._

case class ResponseWrapper (value: Double)

val e = sttp.tapir.endpoint
.in("api" / "sometest4")
.in(query[Int] ("amount"))
.post
.out (jsonBody [ResponseWrapper])

Convert any endpoint to St tpBackendStub:

import sttp.client3.monad.IdMonad

val backend = SttpBackendStub
.apply (IdMonad)
.whenRequestMatchesEndpoint (e)
.thenSuccess (ResponseWrapper (1.0))

A stub which executes an endpoint’s server logic can also be created (here with an identity effect, but any supported
effect can be used):

import sttp.client3.Identity
import sttp.client3.monad.IdMonad

val anotherBackend = SttpBackendStub

.apply (IdMonad)

.whenRequestMatchesEndpointThenLogic (e.serverLogic[Identity] (_ =>_
—Right (ResponseWrapper (1.0))))

76 Chapter 4. Table of contents

https://sttp.softwaremill.com/en/latest/testing.html

tapir documentation, Release 0.x

4.37.2 Black box testing

When testing an application as a whole component, running for example in docker, you might want to stub external
services with which your application interacts.

To do that you might want to use well-known solutions like e.g. wiremock or mock-server, but if their api is described
using tapir you might want to use livestub, which combines nicely with the rest of the sttp ecosystem.

Black box testing with mock-server integration

If you are writing integration tests for your application which communicates with some external systems(e.g payment
providers, SMS providers, etc.), you could stub them using tapir’s integration with mock-server

Add the following dependency:

"com.softwaremill.sttp.tapir" %% "tapir-sttp-mock-server" % "0.19.0-Mo6"

Imports:

’import sttp.tapir.server.mockserver._

Then, given the following endpoint:

import sttp.tapir._

import sttp.tapir.generic.auto.
import sttp.tapir.json.circe._
import io.circe.generic.auto._

case class Sampleln(name: String, age: Int)
case class SampleOut (greeting: String)

val sampleJsonEndpoint = endpoint.post
.in("api" / "v1" / "json")
.in (header[String] ("X-RequestId"))
.in(jsonBody[SampleIn])
.errorOut (stringBody)
.out (jsonBody [SampleOut])

and having any SttpBackend instance (for example, TryHttpURLConnectionBackend or with any other,
arbitrary effect F [__] type), convert any endpoint to a mock-server expectation:

import sttp.client3. {TryHttpURLConnectionBackend, UriContext}

val testingBackend = TryHttpURLConnectionBackend()
val mockServerClient = SttpMockServerClient (baseUri = uri"http://localhost:1080",
—testingBackend)

val in = "request-id-123" -> SampleIn("John", 23)
val out = SampleOut ("Hello, John!")

val expectation = mockServerClient
.whenInputMatches (sampledsonEndpoint) (in)
.thenSuccess (out)
.get

Then you can try to send requests to the mock-server as you would do with live integration:

4.37. Testing 77

http://wiremock.org/
https://www.mock-server.com/
https://github.com/softwaremill/livestub
https://www.mock-server.com/

tapir documentation, Release 0.x

import sttp.tapir.client.sttp.SttpClientInterpreter
import sttp.client3. {TryHttpURLConnectionBackend, UriContext}

val testingBackend = TryHttpURLConnectionBackend ()
val in = "request-id-123" -> SampleIn("John", 23)
val out = SampleOut ("Hello, John!")

val result = SttpClientInterpreter ()
.toRequest (sampleJdsonEndpoint, baseUri = Some (uri"http://localhost:1080"))

.apply (in)
.send (testingBackend)
.get

result == out

4.37.3 Shadowed endpoints

It is possible to define a list of endpoints where some endpoints will be overlapping with each other. In such case when
all matching requests will be handled by the first endpoint; the second endpoint will always be omitted. To detect such
cases one can use FindShadowedEndpoints util class which takes an input of type List [Endpoint [_, _,
_, _]1] anoutputs Set [ShadowedEndpoint].

Example 1:

import sttp.tapir.testing.FindShadowedEndpoints

val el = endpoint.get.in("x" / paths)

val e2 = endpoint.get.in("x" / "y" / "x")
val e3 = endpoint.get.in("x")

val e4 = endpoint.get.in("y" / "x")

val res = FindShadowedEndpoints (List (el, e2, e3, e4))

Results in:

res.toString
// res2: String = "Set (GET /x, 1is shadowed by: GET /x /..., GET /x /y /x, 1is shadowed,
—by: GET /x /...)"

Example 2:

import sttp.tapir.testing.FindShadowedEndpoints

val el = endpoint.get.in(path[String].name("y_1") / path[String].name ("
val e2 = endpoint.get.in(path[String].name ("y_3") / path[String].name ("
val res = FindShadowedEndpoints (List (el, e2))

y_2
y_4

Results in:

res.toString
// res3: String = "Set (GET /[y_3] /[y_4], is shadowed by: GET /[y_1] /[y_2])"

Note that the above takes into account only the method & the shape of the path. It does not take into account pos-
sible decoding failures: these might impact request-endpoint matching, and the exact behavior is determined by the
DecodeFailureHandler used.

78 Chapter 4. Table of contents

server/errors.md#decode-failures

tapir documentation, Release 0.x

4.38 Generate endpoint definitions from an OpenAPI YAML

Note: This is a really early alpha implementation.

4.38.1 Installation steps

Add the sbt plugin to the project/plugins. sbt:

o o

’addSbtPlugin("com.Softwaremill.sttp.tapir" % "sbt-openapi-codegen" % "0.19.0-M6")

Enable the plugin for your project in the build. sbt:

’enablePlugins(OpenapiCodegenPlugin)

Add your OpenApi file to the project, and override the openapiSwaggerFile setting in the build. sbt:

openapiSwaggerFile := baseDirectory.value / "swagger.yaml"

At this point your compile step will try to generate the endpoint definitions to the sttp.tapir.generated.
TapirGeneratedEndpoints object, where you can access the defined case-classes and endpoint definitions.

4.38.2 Usage and options

The generator currently supports these settings, you can override them in the build. sbt;

setting default value description

openapiSwaggerFile | baseDirectory.value / “swagger.yaml” | The swagger file with the api definitions.
openapiPackage sttp.tapir.generated The name for the generated package.
openapiObject TapirGeneratedEndpoints The name for the generated object.

The general usage is;

import sttp.tapir.generated._
import sttp.tapir.docs.openapi._
import sttp.tapir.openapi.circe.yaml._

val docs = TapirGeneratedEndpoints.generatedEndpoints.toOpenAPI ("My Bookshop", "1.0")

Limitations
Currently, the generated code depends on "io.circe" %% "circe—generic". In the future probably we will
make the encoder/decoder json lib configurable (PRs welcome).
We currently miss a lot of OpenApi features like:
* tags
* enums/ADTs
* missing model types and meta descriptions (like date, minLength)

« file handling

4.38. Generate endpoint definitions from an OpenAPlI YAML 79

tapir documentation, Release 0.x

4.39 Other interpreters

At its core, tapir creates a data structure describing the HTTP endpoints. This data structure can be freely interpreted
also by code not included in the library. Below is a list of projects, which provide tapir interpreters.

4.39.1 GraphQL

Caliban allows you to easily turn your Tapir endpoints into a GraphQL API. More details in the documentation.

4.39.2 tapir-gen
tapir-gen extends tapir to do client code generation. The goal is to auto-generate clients in multiple-languages with
multiple libraries.

scala-opentracing contains a module which provides a small integration layer that allows you to create traced http
endpoints from tapir Endpoint definitions.

4.40 Creating your own Tapir

Tapir uses a number of packages which contain either the data classes for describing endpoints or interpreters of this
data (turning endpoints into a server or a client). Importing these packages every time you want to use Tapir may be
tedious, that’s why each package object inherits all of its functionality from a trait.

Hence, it is possible to create your own object which combines all of the required functionalities and provides a
single-import whenever you want to use tapir. For example:

object MyTapir extends Tapir
with AkkaHttpServerInterpreter
with SttpClientInterpreter
with OpenAPIDocsInterpreter
with SchemaDerivation
with TapirJsonCirce
with TapirOpenAPICirceYaml
with TapirAliases

Then, a single import MyTapir._ and all Tapir data types and interpreter methods will be in scope!

4.41 Troubleshooting

4.41.1 StackOverflowException during compilation

Sidenote for scala 2.12.4 and higher: if you encounter an issue with compiling your project because of a
StackOverflowException related to this scala bug, please increase your stack memory. Example:

sbt -J-Xss4M clean compile

80 Chapter 4. Table of contents

https://github.com/ghostdogpr/caliban
https://ghostdogpr.github.io/caliban/docs/interop.html#tapir
https://github.com/xplosunn/tapir-gen
https://github.com/Colisweb/scala-opentracing
https://github.com/scala/bug/issues/10604

tapir documentation, Release 0.x

4.41.2 Logging of generated macros code

For some cases, it may be helpful to examine how generated macros code looks like. To do that, just set an environ-
mental variable and check compilation logs for details.

’ export TAPIR_ LOG_GENERATED_CODE=true

4.42 Contributing

Tapir is an early stage project. Everything might change. All suggestions welcome :)
See the list of issues and pick one! Or report your own.

If you are having doubts on the why or how something works, don’t hesitate to ask a question on gitter or via github.
This probably means that the documentation, scaladocs or code is unclear and can be improved for the benefit of all.

4.42.1 Acknowledgments

Tuple-concatenating code is copied from akka-http

Generic derivation configuration is copied from circe

4.42. Contributing 81

https://github.com/softwaremill/tapir/issues
https://gitter.im/softwaremill/tapir
https://github.com/akka/akka-http/blob/master/akka-http/src/main/scala/akka/http/scaladsl/server/util/TupleOps.scala
https://github.com/circe/circe/blob/master/modules/generic-extras/src/main/scala/io/circe/generic/extras/Configuration.scala

	Code teaser
	Other sttp projects
	Sponsors
	Table of contents
	Quickstart
	Examples
	Goals of the project
	Basics
	Inputs/outputs
	Status codes
	Codecs
	Custom types
	Schema derivation
	Validation
	Content type
	Working with JSON
	Forms
	Authentication
	Streaming support
	Web sockets
	Datatypes integrations
	Serving static content
	Running as an akka-http server
	Running as an http4s server
	Running as an http4s server using ZIO
	Running as a Finatra server
	Running as a Play server
	Running as a Vert.X server
	Running as an zio-http server
	Running using the AWS serverless stack
	Server options
	Server logic
	Observability
	Error handling
	Logging & debugging
	Using as an sttp client
	Using as a Play client
	Using as an http4s client
	Generating OpenAPI documentation
	Generating AsyncAPI documentation
	Testing
	Generate endpoint definitions from an OpenAPI YAML
	Other interpreters
	Creating your own Tapir
	Troubleshooting
	Contributing

