
tapir documentation
Release 0.x

Adam Warski

Feb 22, 2023

Contents

1 Code teaser 3

2 Contents 5

i

ii

tapir documentation, Release 0.x

With tapir you can describe HTTP API endpoints as immutable Scala values. Each endpoint can contain a number of
input parameters, error-output parameters, and normal-output parameters. An endpoint specification can be interpreted
as:

• a server, given the “business logic”: a function, which computes output parameters based on input parameters.
Currently supported:

– Akka HTTP Routes/Directives.

– Http4s HttpRoutes[F]

• a client, which is a function from input parameters to output parameters. Currently supported: sttp.

• documentation. Currently supported: OpenAPI.

Tapir is licensed under Apache2, the source code is available of GitHub.

Contents 1

server/akkahttp.html
server/http4s.html
sttp.html
openapi.html
https://github.com/softwaremill/tapir

tapir documentation, Release 0.x

2 Contents

CHAPTER 1

Code teaser

import tapir._
import tapir.json.circe._
import io.circe.generic.auto._

type Limit = Int
type AuthToken = String
case class BooksFromYear(genre: String, year: Int)
case class Book(title: String)

val booksListing: Endpoint[(BooksFromYear, Limit, AuthToken), String, List[Book],
→˓Nothing] =
endpoint
.get
.in(("books" / path[String]("genre") / path[Int]("year")).mapTo(BooksFromYear))
.in(query[Limit]("limit").description("Maximum number of books to retrieve"))
.in(header[AuthToken]("X-Auth-Token"))
.errorOut(stringBody)
.out(jsonBody[List[Book]])

//

import tapir.docs.openapi._
import tapir.openapi.circe.yaml._

val docs = booksListing.toOpenAPI("My Bookshop", "1.0")
println(docs.toYaml)

//

import tapir.server.akkahttp._
import akka.http.scaladsl.server.Route
import scala.concurrent.Future

def bookListingLogic(bfy: BooksFromYear,
(continues on next page)

3

tapir documentation, Release 0.x

(continued from previous page)

limit: Limit,
at: AuthToken): Future[Either[String, List[Book]]] =

Future.successful(Right(List(Book("The Sorrows of Young Werther"))))
val booksListingRoute: Route = booksListing.toRoute(bookListingLogic _)

//

import tapir.client.sttp._
import com.softwaremill.sttp._

val booksListingRequest: Request[Either[String, List[Book]], Nothing] = booksListing
.toSttpRequest(uri"http://localhost:8080")
.apply(BooksFromYear("SF", 2016), 20, "xyz-abc-123")

Also check out the runnable example which is a slight extension of the above.

4 Chapter 1. Code teaser

https://github.com/softwaremill/tapir/blob/master/playground/src/main/scala/tapir/example/BooksExample.scala

CHAPTER 2

Contents

2.1 Quickstart

To use tapir, add the following dependency to your project:

"com.softwaremill.tapir" %% "tapir-core" % "0.7.5"

This will import only the core classes needed to create endpoint descriptions. To generate a server or a client, you will
need to add further dependencies.

Most of tapir functionalities are grouped package objects which provide builder and extensions methods, hence it’s
easiest to work with tapir if you import whole packages, e.g.:

import tapir._

If you don’t have it already, you’ll also need partial unification enabled in the compiler (alternatively, you’ll need to
manually provide type arguments in some cases). In sbt, this is:

scalacOptions += "-Ypartial-unification"

Finally, type:

endpoint.

and see where auto-complete gets you!

2.1.1 Example usages

To see an example project using Tapir, check out this Todo-Backend using tapir and http4s.

Also check out the simple runnable example which is available in the repository.

5

https://github.com/hejfelix/tapir-http4s-todo-mvc
https://github.com/softwaremill/tapir/blob/master/playground/src/main/scala/tapir/example/BooksExample.scala

tapir documentation, Release 0.x

2.1.2 StackOverflowException during compilation

Sidenote for scala 2.12.4 and higher: if you encounter an issue with compiling your project because of a
StackOverflowException related to this scala bug, please increase your stack memory. Example:

sbt -J-Xss4M clean compile

2.2 Goals of the project

• programmer-friendly, human-comprehensible types, that you are not afraid to write down

• (also inferencable by IntelliJ)

• discoverable API through standard auto-complete

• separate “business logic” from endpoint definition & documentation

• as simple as possible to generate a server, client & docs

• based purely on case class-based, immutable and reusable data structures

• first-class OpenAPI support. Provide as much or as little detail as needed.

• reasonably type safe: only, and as much types to safely generate the server/client/docs

2.2.1 Similar projects

There’s a number of similar projects from which tapir draws inspiration:

• endpoints

• typedapi

• rho

• typed-schema

• guardrail

2.3 Anatomy an endpoint

An endpoint is represented as a value of type Endpoint[I, E, O, S], where:

• I is the type of the input parameters

• E is the type of the error-output parameters

• O is the type of the output parameters

• S is the type of streams that are used by the endpoint’s inputs/outputs

Input/output parameters (I, E and O) can be:

• of type Unit, when there’s no input/ouput of the given type

• a single type

• a tuple of types

6 Chapter 2. Contents

https://github.com/scala/bug/issues/10604
https://github.com/julienrf/endpoints
https://github.com/pheymann/typedapi
https://github.com/http4s/rho
https://github.com/TinkoffCreditSystems/typed-schema
https://github.com/twilio/guardrail

tapir documentation, Release 0.x

Hence, an empty, initial endpoint (tapir.endpoint), with no inputs and no outputs, from which all other endpoints
are derived has the type:

val endpoint: Endpoint[Unit, Unit, Unit, Nothing] = ...

An endpoint which accepts two parameters of types UUID and Int, upon error returns a String, and on normal
completion returns a User, would have the type:

Endpoint[(UUID, Int), String, User, Nothing]

You can think of an endpoint as a function, which takes input parameters of type I and returns a result of type
Either[E, O], where inputs or outputs can contain streaming bodies of type S.

2.3.1 Defining an endpoint

The description of an endpoint is an immutable case class, which includes a number of methods:

• the name, description, etc. methods allow modifying the endpoint information, which will then be in-
cluded in the endpoint documentation

• the get, post etc. methods specify the HTTP method which the endpoint should support

• the in, errorOut and out methods allow adding a new input/output parameter

• mapIn, mapInTo, . . . methods allow mapping the current input/output parameters to another value or to a
case class

An important note on mapping: in tapir, all mappings are bi-directional. That’s because each mapping can be used to
generate a server or a client, as well as in many cases can be used both for input and for output.

2.3.2 Next

Read on about describing endpoint inputs/outputs.

2.4 Defining endpoint’s input/output

An input is described by an instance of the EndpointInput trait, and an output by an instance of the
EndpointOutput trait. Some inputs can be used both as inputs and outputs; then, they additionally implement
the EndpointIO trait.

Each input or output can yield/accept a value (but doesn’t have to).

For example, query[Int]("age"): EndpointInput[Int] describes an input, which is the age parameter
from the URI’s query, and which should be coded (using the string-to-integer codec) as an Int.

The tapir package contains a number of convenience methods to define an input or an output for an endpoint. For
inputs, these are:

• path[T], which captures a path segment as an input parameter of type T

• any string, which will be implicitly converted to a constant path segment. Path segments can be combined with
the / method, and don’t map to any values (have type EndpointInput[Unit])

• paths, which maps to the whole remaining path as a Seq[String]

• query[T](name) captures a query parameter with the given name

• queryParams captures all query parameters, represented as MultiQueryParams

2.4. Defining endpoint’s input/output 7

ios.html
codecs.html

tapir documentation, Release 0.x

• cookie[T](name) captures a cookie from the Cookie header with the given name

• extractFromRequest extracts a value from the request. This input is only used by server interpreters,
ignored by documentation interpreters. Client interpreters ignore the provided value.

For both inputs/outputs:

• header[T](name) captures a header with the given name

• headers captures all headers, represented as Seq[(String, String)]

• cookies captures cookies from the Cookie header and represents them as List[Cookie]

• setCookie(name) captures the value & metadata of the a Set-Cookie header with a matching name

• setCookies captures cookies from the Set-Cookie header and represents them as List[SetCookie]

• body[T, M], stringBody, plainBody[T], jsonBody[T], binaryBody[T], formBody[T],
multipartBody[T] captures the body

• streamBody[S] captures the body as a stream: only a client/server interpreter supporting streams of type S
can be used with such an endpoint

For outputs:

• statusCode maps to the status code of the response

2.4.1 Combining inputs and outputs

Endpoint inputs/outputs can be combined in two ways. However they are combined, the values they represent always
accumulate into tuples of values.

First, descriptions can be combined using the .and method. Such a combination results in an input/output, which
maps to a tuple of the given types, and can be stored as a value and re-used in multiple endpoints. As all other values
in tapir, endpoint input/output descriptions are immutable. For example, an input specifying two query parameters,
start (mandatory) and limit (optional) can be written down as:

val paging: EndpointInput[(UUID, Option[Int])] =
query[UUID]("start").and(query[Option[Int]]("limit"))

// we can now use the value in multiple endpoints, e.g.:
val listUsersEndpoint: Endpoint[(UUID, Option[Int]), Unit, List[User], Nothing] =

endpoint.in("user" / "list").in(paging).out(jsonBody[List[User]])

Second, inputs can be combined by calling the in, out and errorOutmethods on Endpointmultiple times. Each
time such a method is invoked, it extends the list of inputs/outputs. This can be useful to separate different groups of
parameters, but also to define template-endpoints, which can then be further specialized. For example, we can define
a base endpoint for our API, where all paths always start with /api/v1.0, and errors are always returned as a json:

val baseEndpoint: Endpoint[Unit, ErrorInfo, Unit, Nothing] =
endpoint.in("api" / "v1.0").errorOut(jsonBody[ErrorInfo])

Thanks to the fact that inputs/outputs accumulate, we can use the base endpoint to define more inputs, for example:

val statusEndpoint: Endpoint[Unit, ErrorInfo, Status, Nothing] =
baseEndpoint.in("status").out(jsonBody[Status])

The above endpoint will correspond to the api/v1.0/status path.

8 Chapter 2. Contents

tapir documentation, Release 0.x

2.4.2 Mapping over input values

Inputs/outputs can also be mapped over. As noted before, all mappings are bi-directional, so that they can be used
both when interpreting an endpoint as a server, and as a client, as well as both in input and output contexts.

There’s a couple of ways to map over an input/output. First, there’s the map[II](f: I => II)(g: II =>
I) method, which accepts functions which provide the mapping in both directions. For example:

case class Paging(from: UUID, limit: Option[Int])

val paging: EndpointInput[Paging] =
query[UUID]("start").and(query[Option[Int]]("limit"))
.map((from, limit) => Paging(from, limit))(paging => (paging.from, paging.limit))

Creating a mapping between a tuple and a case class is a common operation, hence there’s also a
mapTo(CaseClassCompanion) method, which automatically provides the mapping functions:

case class Paging(from: UUID, limit: Option[Int])

val paging: EndpointInput[Paging] =
query[UUID]("start").and(query[Option[Int]]("limit"))
.mapTo(Paging)

Mapping methods can also be called on an endpoint (which is useful if inputs/outputs are accumulated, for example).
The Endpoint.mapIn, Endpoint.mapInTo etc. have the same signatures are the ones above.

2.4.3 Path matching

By default (as with all other types of inputs), if no path input/path segments are defined, any path will match.

If any path input/path segment is defined, the path must match exactly - any remaining path segments will cause the
endpoint not to match the request. For example, endpoint.in("api") will match /api, /api/, but won’t
match /, /api/users.

To match only the root path, use an empty string: endpoint.in("") will match http://server.com/ and
http://server.com.

To match a path prefix, first define inputs which match the path prefix, and then capture any remaining part using
paths, e.g.: endpoint.in("api" / "download").in(paths)".

2.4.4 Status codes

To provide the status code of a server response, use the statusCode output, which maps to a type tapir.
model.StatusCode = Int alias. The tapir.model.StatusCodes object contains known status codes as
constants. This type of output is used only when interpreting the endpoint as a server.

It is also possible to specify how to determine the status code basing on the value of an output (typically the body).
This is used when interpreting the endpoint as a server and when generating documentation.

For example, below is a specification for an endpoint where the error output is fixed to be of type ErrorInfo; such
a specification can then be refined and reused for other endpoints:

case class ErrorInfo(errorType: ErrorType, msg: String)

val baseEndpoint = endpoint.errorOut(
statusFrom(

(continues on next page)

2.4. Defining endpoint’s input/output 9

tapir documentation, Release 0.x

(continued from previous page)

jsonBody[ErrorType],
StatusCodes.BadRequest,
whenValue[ErrorType](_.errorType == ErrorType.NotFound, StatusCodes.NotFound),
whenValue[ErrorType](_.errorType == ErrorType.Exception, StatusCodes.

→˓InternalServerError)
)

)

The statusFrom method takes as parameters: the wrapped output, default status code, and any number of specific
status codes mappings based on the value (whenValue) or class (whenClass) of the output value.

2.4.5 Next

Read on about codecs.

2.5 Codecs

A codec specifies how to map from and to raw values that are sent over the network. Raw values, which are natively
supported by client/server interpreters, include Strings, byte arrays, Files and multiparts.

There are built-in codecs for most common types such as String, Int etc. Codecs are usually defined as implicit
values and resolved implicitly when they are referenced.

For example, a query[Int]("quantity") specifies an input parameter which corresponds to the quantity
query parameter and will be mapped as an Int. There’s an implicit Codec[Int] value that is referenced by the
query method (which is defined in the tapir package).

In a server setting, if the value cannot be parsed as an int, a decoding failure is reported, and the endpoint won’t match
the request, or a 400 Bad Request response is returned (depending on configuration).

2.5.1 Optional and multiple parameters

Some inputs/outputs allow optional, or multiple parameters:

• path segments are always required

• query and header values can be optional or multiple (repeated query parameters/headers)

• bodies can be optional, but not multiple

In general, optional parameters are represented as Option values, and multiple parameters as List values. For ex-
ample, header[Option[String]]("X-Auth-Token") describes an optional header. An input described as
query[List[String]]("color") allows multiple occurences of the color query parameter, with all values
gathered into a list.

Implementation note

To support optional and multiple parameters, inputs/outputs don’t require implicit Codec values (which represent
only mandatory values), but CodecForOptional and CodecForMany implicit values.

A CodecForOptional can be used in a context which allows optional values. Given a Codec[T], instances of
both CodecForOptional[T] and CodecForOptional[Option[T]] will be generated (that’s also the way

10 Chapter 2. Contents

codecs.html

tapir documentation, Release 0.x

to add support for custom optional types). The first one will require a value, and report a decoding failure if a value is
missing. The second will properly map to an Option, depending if the value is present or not.

2.5.2 Schemas

A codec also contains the schema of the mapped type. This schema information is used when generating documenta-
tion. For primitive types, the schema values are built-in, and include values such as Schema.SString, Schema.
SArray, Schema.SBinary etc.

The schema is left unchanged when mapping over a codec, as the underlying representation of the value doesn’t
change.

When codecs are derived for complex types, e.g. for json mapping, schemas are looked up through implicit
SchemaFor[T] values. See json support for more details.

Tapir supports schema generation for coproduct types of the box. In order to extend openApi schema representation a
discriminator object can be specified.

For example, given following coproduct:

sealed trait Entity{
def kind: String

}
case class Person(firstName:String, lastName:String) extends Entity {
def kind: String = "person"

}
case class Organization(name: String) extends Entity {

def kind: String = "org"
}

The discriminator may look like:

val sPerson = implicitly[SchemaFor[Person]]
val sOrganization = implicitly[SchemaFor[Organization]]
implicit val sEntity: SchemaFor[Entity] =

SchemaFor.oneOf[Entity, String](_.kind, _.toString)("person" -> sPerson, "org" ->
→˓sOrganization)

2.5.3 Media types

Codecs carry an additional type parameter, which specifies the media type. Some built-in media types include text/
plain, application/json and multipart/form-data. Custom media types can be added by creating an
implementation of the tapir.MediaType trait.

Thanks to codec being parametrised by media types, it is possible to have a Codec[MyCaseClass, TextPlain,
_] which specifies how to serialize a case class to plain text, and a different Codec[MyCaseClass, Json, _],
which specifies how to serialize a case class to json. Both can be implicitly available without implicit resolution
conflicts.

Different media types can be used in different contexts. When defining a path, query or header parameter, only a codec
with the TextPlain media type can be used. However, for bodies, any media types is allowed. For example, the
input/output described by jsonBody[T] requires a json codec.

2.5. Codecs 11

json.html

tapir documentation, Release 0.x

2.5.4 Custom types

Support for custom types can be added by writing a codec from scratch, or mapping over an existing codec. However,
custom types can also be supported by mapping over inputs/outputs, not codecs. When to use one and the other?

In general, codecs should be used when translating between raw values and “application-primitives”. Codecs also
allow the decoding process to result in an error, or to complete successfully. For example, to support a custom id type:

def decode(s: String): DecodeResult[MyId] = MyId.parse(s) match {
case Success(v) => DecodeResult.Value(v)
case Failure(f) => DecodeResult.Error(s, f)

}
def encode(id: MyId): String = id.toString

implicit val myIdCodec: Codec[MyId, TextPlain, _] = Codec.stringPlainCodecUtf8
.mapDecode(decode)(encode)

Additionally, if a type is supported by a codec, it can be used in multiple contexts, such as query parameters, headers,
bodies, etc. Mapped inputs by construction have a fixed context.

On the other hand, when building composite types out of many values, or when an isomorphic representation of a type
is needed, but only for a single input/output/endpoint, mapping over an input/output is the simpler solution. Note that
while codecs can report errors during decoding, mapping over inputs/outputs doesn’t have this possibility.

2.5.5 Validation

While codecs support reporting decoding failures, this is not meant as a validation solution, as it only works on single
values, while validation often involves multiple combined values.

Decoding failures should be reported when the input is in an incorrect low-level format, when parsing a “raw value”
fails. In other words, decoding failures should be reported for format failures, not business validation errors.

Any validation should be done as part of the “business logic” methods provided to the server interpreters. In case val-
idation fails, the result can be an error, which is one of the mappings defined in an endpoint (the E in Endpoint[I,
E, O, S]).

2.5.6 Next

Read on about json support.

2.6 Working with JSON

Json values are supported through codecs which encode/decode values to json strings. However, third-party libraries
are needed for actual json parsing/printing. Currently, Circe is supported. To use, add the following dependency to
your project:

"com.softwaremill.tapir" %% "tapir-json-circe" % "0.7.5"

Next, import the package (or extend the TapirJsonCirce trait, see MyTapir):

import tapir.json.circe._

12 Chapter 2. Contents

json.html
https://github.com/circe/circe
../mytapir.html

tapir documentation, Release 0.x

This will bring into scope Codecs which, given an in-scope circe Encoder/Decoder and a SchemaFor, will
create a codec using the json media type. Circe includes a couple of approaches to generating encoders/decoders
(manual, semi-auto and auto), so you may choose whatever suits you.

For example, to automatically generate a JSON codec for a case class:

import tapir._
import tapir.json.circe._
import io.circe.generic.auto._

case class Book(author: String, title: String, year: Int)

val bookInput: EndpointIO[Book] = jsonBody[Book]

To add support for other JSON libraries, see the sources for the Circe codec (which is just a couple of lines of code).

2.6.1 Schemas

To create a json codec automatically, not only a circe Encoder/Decoder is needed, but also an implicit
SchemaFor[T] value, which provides a mapping between a type T and its schema. A schema-for value contains a
single schema: Schema field.

For custom types, schemas are derived automatically using Magnolia, given that schemas are defined for all of the
case class’s fields. It is possible to configure the automatic derivation to use snake-case, kebab-case or a custom field
naming policy, by providing an implicit tapir.generic.Configuration value:

implicit val customConfiguration: Configuration =
Configuration.default.withSnakeCaseMemberNames

Alternatively, SchemaFor values can be defined by hand, either for whole case classes, or only for some of its fields.
For example, here we state that the schema for MyCustomType is a String:

implicit val schemaForMyCustomType: SchemaFor[MyCustomType] = SchemaFor(Schema.
→˓SString)

2.6.2 Next

Read on about working with forms.

2.7 Form support

2.7.1 URL-encoded forms

An URL-encoded form input/output can be specified in two ways. First, it is possible to map all form fields as a
Seq[(String, String)], or Map[String, String] (which is more convenient if fields can’t have multiple
values):

formBody[Seq[(String, String)]]: EndpointIO[Seq[(String, String)],
MediaType.XWwwFormUrlencoded, _]

formBody[Map[String, String]]: EndpointIO[Map[String, String],
MediaType.XWwwFormUrlencoded, _]

2.7. Form support 13

https://github.com/softwaremill/tapir/blob/master/json/circe/src/main/scala/tapir/json/circe/JsonCirce.scala
https://propensive.com/opensource/magnolia/
forms.html

tapir documentation, Release 0.x

Second, form data can be mapped to a case class. The codec for the case class is generated using a macro at compile-
time. The fields of the case class should have types, for which there is a plain text codec. For example:

case class RegistrationForm(name: String, age: Int, news: Boolean, city:
→˓Option[String])

formBody[RegistrationForm]

Each form-field is named the same as the case-class-field. The names can be transformed to snake or kebab case by
providing an implicit tapir.generic.Configuraton.

2.7.2 Multipart forms

Similarly as above, multipart form input/outputs can be specified in two ways. To map to all parts of a multipart body,
use:

multipartBody[Seq[AnyPart]]: EndpointIO[Seq[AnyPart], MediaType.MultipartFormData, _]

where type AnyPart = Part[_]. Part is a case class containing the name of the part, disposition parameters,
headers, and the body. The bodies will be mappes as byte arrays (Array[Byte]), unless a custom multipart codec
is defined using the Codec.multipartCodec method.

As with URL-encoded forms, multipart bodies can be mapped directly to case classes, however without the restriction
on codecs for individual fields. Given a field of type T, first a plain text codec is looked up, and if one isn’t found, any
codec for any media type (e.g. JSON) is searched for.

Each part is named the same as the case-class-field. The names can be transformed to snake or kebab case by providing
an implicit tapir.generic.Configuraton.

Additionally, the case class to which the multipart body is mapped can contain both normal fields, and fields of type
Part[T]. This is useful, if part metadata (e.g. the filename) is relevant.

For example:

case class RegistrationForm(userData: User, photo: Part[File], news: Boolean)

multipartBody[RegistrationForm]

2.7.3 Next

Read on about authentication.

2.8 Authentication

Inputs which carry authentication data wrap another input can be marked as such by declaring them using members
of the auth object. Apart from predefined codecs for some authentication methods, such inputs will be treated
differently] when generating documentation. Otherwise, they behave as normal inputs which map to the the given
type.

Currently, the following authentication inputs are available (assuming import tapir._):

• auth.apiKey(anotherInput): wraps any other input and designates it as an api key. The input is typi-
cally a header, cookie or a query parameter

14 Chapter 2. Contents

auth.html

tapir documentation, Release 0.x

• auth.basic: EndpointInput[UsernamePassword]: maps to the base64-encoded user-
name/password pair in the Authorization header

• auth.bearer: EndpointInput[String]: maps to Bearer [token] in the Authorization
header

Multiple authentication inputs indicate that all of the given authentication values should be provided. Specifying
alternative authentication methods (where only one value out of many needs to be provided) is currently not supported.

When interpreting a route as a server, it is useful to define the authentication input first, to be able to share the
authentication logic among multiple endpoints easily. See common server options for more details.

2.8.1 Next

Read on a summary on implicits for custom types.

2.9 Implicits guide for custom types

A could not find implicit value error can be sometimes puzzling, so here’s a short summary of what
kind of implicits tapir uses for supporting custom types.

In general, when using a custom type in any context, an implicit Codec[T, _, _] is required. Codecs for custom
types can be either derived automatically, or created basing on existing codecs.

2.9.1 Path, query parameters and headers

When using a custom type for a path parameter, query parameter or header value, you’ll need a codec with the text/
plain media type. You can use an existing codec and map over it, to create a new one. For example:

case class MyId(...)
object MyId {
def parse(s: String): Try[String] = ...

}

def decode(s: String): DecodeResult[MyId] = MyId.parse(s) match {
case Success(v) => DecodeResult.Value(v)
case Failure(f) => DecodeResult.Error(s, f)

}
def encode(id: MyId): String = id.toString

implicit val myIdCodec: Codec[MyId, TextPlain, _] = Codec.stringPlainCodecUtf8
.mapDecode(decode)(encode)

2.9.2 Text and binary bodies

The approach for text and binary bodies is the same as for queries/paths/headers. To support a custom
types, you’ll need to map over an existing codec, for example Codec.byteArrayCodec or Codec.
stringPlainCodecUtf8, and assign] the result to an implicit value.

2.9. Implicits guide for custom types 15

../server/common.html
implicits.html

tapir documentation, Release 0.x

2.9.3 JSON bodies

When working with json bodies, the custom types can be much more complex than when mapping a query or path
parameter. Using the circe integration, a Codec[T, Json, _], where T is a case class, can be automatically
derived given the following implicit values:

• io.circe.Encoder[T]

• io.circe.Decoder[T]

• tapir.SchemaFor[T]

The circe encoders/decoders have to be provided using one of the methods supported by Circe, e.g. by importing
import io.circe.generic.auto._.

The SchemaFor[T] can be auto-generated using Magnolia, or provided by hand. See json for more details.

In the future, it would be ideal if encoders/decoders could be derived automatically from the schema. For
now however, the schema and the json encoders have to be provided separately.

2.9.4 Form bodies

When mapping either url-encoded or multipart form bodies, for each field, a plain codec has to be available in the
implicit scope. That is, a value of type Codec[R, TextPlain, _], for each R which is a field of the case class
to which the data is being mapped.

2.10 Running as an akka-http server

To expose an endpoint as an akka-http server, first add the following dependency:

"com.softwaremill.tapir" %% "tapir-akka-http-server" % "0.7.5"

and import the package:

import tapir.server.akkahttp._

This adds extension methods to the Endpoint type: toDirective, toRoute and toRouteRecoverErrors.
The first two require the logic of the endpoint to be given as a function of type:

I => Future[Either[E, O]]

The third recovers errors from failed futures, and hence requires that E is a subclass of Throwable (an exception); it
expects a function of type I => Future[O].

For example:

import tapir._
import tapir.server.akkahttp._
import scala.concurrent.Future
import akka.http.scaladsl.server.Route

def countCharacters(s: String): Future[Either[Unit, Int]] =
Future.successful(Right[Unit, Int](s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Nothing] =
endpoint.in(stringBody).out(plainBody[Int])

(continues on next page)

16 Chapter 2. Contents

json.html
forms.html
https://doc.akka.io/docs/akka-http/current/

tapir documentation, Release 0.x

(continued from previous page)

val countCharactersRoute: Route = countCharactersEndpoint.toRoute(countCharacters)

Note that these functions take one argument, which is a tuple of type I. This means that functions which take multiple
arguments need to be converted to a function using a single argument using .tupled:

def logic(s: String, i: Int): Future[Either[Unit, String]] = ???
val anEndpoint: Endpoint[(String, Int), Unit, String, Nothing] = ???
val aRoute: Route = anEndpoint.toRoute((logic _).tupled)

The created Route/Directive can then be further combined with other akka-http directives, for example nested
within other routes. The tapir-generated Route/Directive captures from the request only what is described by the
endpoint.

It’s completely feasible that some part of the input is read using akka-http directives, and the rest using tapir endpoint
descriptions; or, that the tapir-generated route is wrapped in e.g. a metrics route. Moreover, “edge-case endpoints”,
which require some special logic not expressible using tapir, can be always implemented directly using akka-http. For
example:

val myRoute: Route = metricsDirective {
securityDirective { user =>
tapirEndpoint.toRoute(input => /* here we can use both `user` and `input` values

→˓*/)
}

}

2.10.1 Streaming

The akka-http interpreter accepts streaming bodies of type Source[ByteString, Any], which can be used
both for sending response bodies and reading request bodies. Usage: streamBody[Source[ByteString,
Any]](schema, mediaType).

2.10.2 Configuration

The interpreter can be configured by providing an implicit AkkaHttpServerOptions value and status mappers,
see common server configuration for details.

2.10.3 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See common
server configuration for details.

2.11 Running as an http4s server

To expose an endpoint as an http4s server, first add the following dependency:

"com.softwaremill.tapir" %% "tapir-http4s-server" % "0.7.5"

and import the package:

2.11. Running as an http4s server 17

common.html
common.html
common.html
https://http4s.org

tapir documentation, Release 0.x

import tapir.server.http4s._

This adds two extension methods to the Endpoint type: toRoutes and toRoutesRecoverErrors. This first
requires the logic of the endpoint to be given as a function of type:

I => F[Either[E, O]]

where F[_] is the chosen effect type. The second recovers errors from failed effects, and hence requires that E is a
subclass of Throwable (an exception); it expects a function of type I => F[O]. For example:

import tapir._
import tapir.server.http4s._
import cats.effect.IO
import org.http4s.HttpRoutes
import cats.effect.ContextShift

// will probably come from somewhere else
implicit val cs: ContextShift[IO] =

IO.contextShift(scala.concurrent.ExecutionContext.global)

def countCharacters(s: String): IO[Either[Unit, Int]] =
IO.pure(Right[Unit, Int](s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Nothing] =
endpoint.in(stringBody).out(plainBody[Int])

val countCharactersRoutes: HttpRoutes[IO] =
countCharactersEndpoint.toRoutes(countCharacters _)

Note that these functions take one argument, which is a tuple of type I. This means that functions which take multiple
arguments need to be converted to a function using a single argument using .tupled:

def logic(s: String, i: Int): IO[Either[Unit, String]] = ???
val anEndpoint: Endpoint[(String, Int), Unit, String, Nothing] = ???
val aRoute: Route = anEndpoint.toRoute((logic _).tupled)

The created HttpRoutes are the usual http4s Kleisli-based transformation of a Request to a Response,
and can be further composed using http4s middlewares or request-transforming functions. The tapir-generated
HttpRoutes captures from the request only what is described by the endpoint.

It’s completely feasible that some part of the input is read using a http4s wrapper function, which is then composed with
the tapir endpoint descriptions. Moreover, “edge-case endpoints”, which require some special logic not expressible
using tapir, can be always implemented directly using http4s.

2.11.1 Streaming

The http4s interpreter accepts streaming bodies of type Stream[F, Byte], which can be used both for
sending response bodies and reading request bodies. Usage: streamBody[Stream[F, Byte]](schema,
mediaType).

2.11.2 Configuration

The interpreter can be configured by providing an implicit Http4sServerOptions value and status mappers, see
common server configuration for details.

The http4s options also includes configuration for the blocking execution context to use, and the io chunk size.

18 Chapter 2. Contents

common.html

tapir documentation, Release 0.x

2.11.3 Defining an endpoint together with the server logic

It’s also possible to define an endpoint together with the server logic in a single, more concise step. See common
server configuration for details.

2.12 Common server options

2.12.1 Status codes

By default, successful responses are returned with the 200 OK status code, and errors with 400 Bad Request.
However, this can be customised by specifying how an output maps to the status code.

2.12.2 Defining an endpoint together with the server logic

It’s possible to combine an endpoint description with the server logic in a single object, ServerEndpoint[I, E,
O, S, F]. Such an endpoint contains not only an endpoint of type Endpoint[I, E, O, S], but also a logic
function I => F[Either[E, O]], for some effect F.

For example, the book example can be more concisely written as follows:

import tapir._
import tapir.server.akkahttp._
import scala.concurrent.Future
import akka.http.scaladsl.server.Route

val countCharactersServerEndpoint: ServerEndpoint[String, Unit, Int, Nothing, Future]
→˓=
endpoint.in(stringBody).out(plainBody[Int]).serverLogic { s =>
Future.successful(Right[Unit, Int](s.length))

}

val countCharactersRoute: Route = countCharactersServerEndpoint.toRoute

A ServerEndpoint can then be converted to a route using .toRoute/.toRoutes methods (without any addi-
tional parameters), or to documentation.

Moreover, a list of server endpoints can be converted to routes or documentation as well:

val endpoint1 = endpoint.in("hello").out(stringBody)
.serverLogic { _ => Future.successful("world") }

val endpoint2 = endpoint.in("ping").out(stringBody)
.serverLogic { _ => Future.successful("pong") }

val route: Route = List(endpoint1, endpoint2).toRoute

Note that when dealing with endpoints which have multiple input parameters, the server logic function is a function
of a single argument, which is a tuple; hence you’ll need to pattern-match using case to extract the parameters:

val echoEndpoint = endpoint
.in(query[Int]("count"))
.in(stringBody)
.out(stringBody)
.serverLogic { case (count, body) =>

(continues on next page)

2.12. Common server options 19

common.html
common.html
../endpoint/ios.html#status-codes

tapir documentation, Release 0.x

(continued from previous page)

Future.successful(body * count)
}

2.12.3 Server options

Each interpreter accepts an implicit options value, which contains configuration values for:

• how to create a file (when receiving a response that is mapped to a file, or when reading a file-mapped multipart
part)

• how to handle decode failures

To customise the server options, define an implicit value, which will be visible when converting an endpoint or multiple
endpoints to a route/routes. For example, for AkkaHttpServerOptions:

implicit val customServerOptions: AkkaHttpServerOptions = AkkaHttpServerOptions.
→˓default.copy(...)

Handling decode failures

Quite often user input will be malformed and decoding will fail. Should the request be completed with a 400 Bad
Request response, or should the request be forwarded to another endpoint? By default, tapir follows OpenAPI
conventions, that an endpoint is uniquely identified by the method and served path. That’s why:

• an “endpoint doesn’t match” result is returned if the request method or path doesn’t match. The http library
should attempt to serve this request with the next endpoint.

• otherwise, we assume that this is the correct endpoint to serve the request, but the parameters are somehow
malformed. A 400 Bad Request response is returned if a query parameter, header or body is missing /
decoding fails, or if the decoding a path capture fails with an error (but not a “missing” decode result).

This can be customised by providing an implicit instance of tapir.server.DecodeFailureHandler, which
basing on the request, failing input and failure description can decide, whether to return a “no match” or a specific
response.

Only the first failure is passed to the DecodeFailureHandler. Inputs are decoded in the following order: method,
path, query, header, body.

2.12.4 Extracting common route logic

Quite often, especially for authentication, some part of the route logic is shared among multiple endpoints. However,
these functions don’t compose in a straightforward way, as authentication usually operates on a single input, which is
only a part of the whole logic’s input. Suppose you have the following methods:

type AuthToken = String

def authFn(token: AuthToken): Future[Either[ErrorInfo, User]]
def logicFn(user: User, data: String, limit: Int): Future[Either[ErrorInfo, Result]]

which you’d like to apply to an endpoint with type:

val myEndpoint: Endpoint[(AuthToken, String, Int), ErrorInfo, Result, Nothing] = ...

20 Chapter 2. Contents

../endpoint/auth.html

tapir documentation, Release 0.x

To avoid composing these functions by hand, tapir defines helper extension methods, andThenFirst and
andTheFirstE. The first one should be used when errors are represented as failed wrapper types (e.g. failed
futures), the second is errors are represented as Eithers.

This extension method is defined in the same traits as the route interpreters, both for Future (in the akka-http
interpreter) and for an arbitrary monad (in the http4s interpreter), so importing the package is sufficient to use it:

import tapir.server.akkahttp._
val r: Route = myEndpoint.toRoute((authFn _).andThenFirstE((logicFn _).tupled))

Writing down the types, here are the generic signatures when using andThenFirst and andThenFirstE:

f1: T => Future[U]
f2: (U, A1, A2, ...) => Future[O]
(f1 _).andThenFirst(f2): (T, A1, A2, ...) => Future[O]

f1: T => Future[Either[E, U]]
f2: (U, A1, A2, ...) => Future[Either[E, O]]
(f1 _).andThenFirstE(f2): (T, A1, A2, ...) => Future[Either[E, O]]

2.12.5 Exception handling

There’s no exception handling built into tapir. However, tapir contains a more general error handling mechanism, as
the endpoints can contain dedicated error outputs.

If the logic function, which is passed to the server interpreter, fails (i.e. throws an exception, which results in a failed
Future or IO/Task), this is propagated to the library (akka-http or http4s).

However, any exceptions can be recovered from and mapped to an error value. For example:

type ErrorInfo = String

def logic(s: String): Future[Int] = ...

def handleErrors[T](f: Future[T]): Future[Either[ErrorInfo, T]] =
f.transform {
case Success(v) => Success(Right(v))
case Failure(e) =>
logger.error("Exception when running endpoint logic", e)
Success(Left(e.getMessage))

}

endpoint
.errorOut(plainBody[ErrorInfo])
.out(plainBody[Int])
.in(query[String]("name"))
.toRoute((logic _).andThen(handleErrors))

In the above example, errors are represented as Strings (aliased to ErrorInfo for readability). When the logic
completes successfully an Int is returned. Any exceptions that are raised are logged, and represented as a value of
type ErrorInfo.

Following the convention, the left side of the Either[ErrorInfo, T] represents an error, and the right side
success.

Alternatively, errors can be recovered from failed effects and mapped to the error output - provided that the E type in
the endpoint description is itself a subclass of exception. This can be done using the toRouteRecoverErrors
method.

2.12. Common server options 21

tapir documentation, Release 0.x

2.13 Debugging servers

When dealing with multiple endpoints, how to find out which endpoint handled a request, or why an endpoint didn’t
handle a request?

For this purpose, tapir provides optional logging. The logging options (and messages) can be customised by changing
the default LoggingOptions class, which is part of server options.

The following can be logged:

1. DEBUG-log, when a request is handled by an endpoint

2. DEBUG-log, when the inputs can’t be decoded, and the decode failure maps to a response

3. DEBUG-log, when the inputs can’t be decoded, and the decode failure doesn’t map to a response (the next
endpoint will be tried)

4. ERROR-log, when there’s an exception during evaluation of the server logic

By default, logs of type (1), (2) and (4) are logged. Logging all decode failures (3) might be helpful when debugging,
but can also produce a large amount of logs.

Even if logging for a particular category (as described above) is set to true, normal logger rules apply - if you don’t
see the logs, please verify your logging levels for the appropriate packages.

2.14 Using as an sttp client

Add the dependency:

"com.softwaremill.tapir" %% "tapir-sttp-client" % "0.7.5"

To make requests using an endpoint definition using sttp, import:

import tapir.client.sttp._

This adds the toRequest(Uri) extension method to any Endpoint instance which, given the given base URI
returns a function:

[I as function arguments] => Request[Either[E, O], Nothing]

After providing the input parameters, the result is a description of the request to be made, which can be further
customised and sent using any sttp backend.

See the runnable example for example usage.

2.15 Generating OpenAPI documentation

To use, add the following dependencies:

"com.softwaremill.tapir" %% "tapir-openapi-docs" % "0.7.5"
"com.softwaremill.tapir" %% "tapir-openapi-circe-yaml" % "0.7.5"

Tapir contains a case class-based model of the openapi data structures in the openapi/openapi-model subproject
(the model is independent from all other tapir modules and can be used stand-alone).

22 Chapter 2. Contents

common.html
https://github.com/softwaremill/sttp
https://github.com/softwaremill/tapir/blob/master/playground/src/main/scala/tapir/example/BooksExample.scala

tapir documentation, Release 0.x

An endpoint can be converted to an instance of the model by importing the tapir.docs.openapi._ package and
calling the provided extension method:

import tapir.openapi.OpenAPI
import tapir.docs.openapi._

val docs: OpenAPI = booksListing.toOpenAPI("My Bookshop", "1.0")

Such a model can then be refined, by adding details which are not auto-generated. Working with a deeply nested case
class structure such as the OpenAPI one can be made easier by using a lens library, e.g. Quicklens.

The openapi case classes can then be serialised, either to JSON or YAML using Circe:

import tapir.openapi.circe.yaml._

println(docs.toYaml)

2.15.1 Exposing OpenAPI documentation

Exposing the OpenAPI documentation can be very application-specific. For example, to expose the docs using the
Swagger UI and akka-http:

• add libraryDependencies += "org.webjars" % "swagger-ui" % "3.22.0" to build.
sbt (or newer)

• generate the yaml content to serve as a String using tapir:

import tapir.docs.openapi._
import tapir.openapi.circe.yaml._

val docsAsYaml: String = myEndpoints.toOpenAPI("My App", "1.0").toYaml

• add the following routes to your server:

val SwaggerYml = "swagger.yml"

private val redirectToIndex: Route =
redirect(s"/swagger/index.html?url=/swagger/$SwaggerYml", StatusCodes.

→˓PermanentRedirect)

private val swaggerVersion = {
val p = new Properties()
p.load(getClass.getResourceAsStream("/META-INF/maven/org.webjars/swagger-ui/pom.

→˓properties"))
p.getProperty("version")

}

val routes: Route =
path("swagger") {
redirectToIndex

} ~
pathPrefix("swagger") {

path("") { // this is for trailing slash
redirectToIndex

} ~
path(SwaggerYml) {
complete(yml)

(continues on next page)

2.15. Generating OpenAPI documentation 23

https://github.com/adamw/quicklens
https://circe.github.io/circe/

tapir documentation, Release 0.x

(continued from previous page)

} ~
getFromResourceDirectory(s"META-INF/resources/webjars/swagger-ui/

→˓$swaggerVersion/")
}

2.16 Creating your own Tapir

Tapir uses a number of packages which contain either the data classes for describing endpoints or interpreters of this
data (turning endpoints into a server or a client). Importing these packages every time you want to use Tapir may be
tedious, that’s why each package object inherits all of its functionality from a trait.

Hence, it is possible to create your own object which combines all of the required functionalities and provides a
single-import whenever you want to use tapir. For example:

object MyTapir extends Tapir
with TapirAkkaHttpServer
with TapirSttpClient
with TapirCirceJson
with TapirOpenAPICirceYaml

Then, a single import MyTapir._ and all Tapir data types and extensions methods will be in scope!

2.17 Contributing

Tapir is an early stage project. Everything might change. All suggestions welcome :)

See the list of issues and pick one! Or report your own.

If you are having doubts on the why or how something works, don’t hesitate to ask a question on gitter or via github.
This probably means that the documentation, scaladocs or code is unclear and can be improved for the benefit of all.

2.17.1 Acknowledgments

Tuple-concatenating code is copied from akka-http

Generic derivation configuration is copied from circe

24 Chapter 2. Contents

https://github.com/softwaremill/tapir/issues
https://gitter.im/softwaremill/tapir
https://github.com/akka/akka-http/blob/master/akka-http/src/main/scala/akka/http/scaladsl/server/util/TupleOps.scala
https://github.com/circe/circe/blob/master/modules/generic-extras/src/main/scala/io/circe/generic/extras/Configuration.scala

	Code teaser
	Contents

