
tapir documentation
Release 0.0.11

Adam Warski

Feb 22, 2023

Contents

1 Code teaser 3

2 Contents 5

i

ii

tapir documentation, Release 0.0.11

With tapir you can describe HTTP API endpoints as immutable Scala values. Each endpoint can contain a number of
input parameters, error-output parameters, and normal-output parameters. An endpoint specification can be interpreted
as:

• a server, given the “business logic”: a function, which computes output parameters based on input parameters.
Currently supported:

– Akka HTTP Routes/Directives.

– Http4s HttpRoutes[F]

• a client, which is a function from input parameters to output parameters. Currently supported: sttp.

• documentation. Currently supported: OpenAPI.

Tapir is licensed under Apache2, the source code is available of GitHub.

Contents 1

server/akkahttp.html
server/http4s.html
sttp.html
openapi.html
https://github.com/softwaremill/tapir

tapir documentation, Release 0.0.11

2 Contents

CHAPTER 1

Code teaser

import tapir._
import tapir.json.circe._
import io.circe.generic.auto._

type Limit = Int
type AuthToken = String
case class BooksFromYear(genre: String, year: Int)
case class Book(title: String)

val booksListing: Endpoint[(BooksFromYear, Limit, AuthToken), String, List[Book],
→˓Nothing] =
endpoint
.get
.in(("books" / path[String]("genre") / path[Int]("year")).mapTo(BooksFromYear))
.in(query[Limit]("limit").description("Maximum number of books to retrieve"))
.in(header[AuthToken]("X-Auth-Token"))
.errorOut(stringBody)
.out(jsonBody[List[Book]])

//

import tapir.docs.openapi._
import tapir.openapi.circe.yaml._

val docs = booksListing.toOpenAPI("My Bookshop", "1.0")
println(docs.toYaml)

//

import tapir.server.akkahttp._
import akka.http.scaladsl.server.Route
import scala.concurrent.Future

def bookListingLogic(bfy: BooksFromYear,
(continues on next page)

3

tapir documentation, Release 0.0.11

(continued from previous page)

limit: Limit,
at: AuthToken): Future[Either[String, List[Book]]] =

Future.successful(Right(List(Book("The Sorrows of Young Werther"))))
val booksListingRoute: Route = booksListing.toRoute(bookListingLogic _)

//

import tapir.client.sttp._
import com.softwaremill.sttp._

val booksListingRequest: Request[Either[String, List[Book]], Nothing] = booksListing
.toSttpRequest(uri"http://localhost:8080")
.apply(BooksFromYear("SF", 2016), 20, "xyz-abc-123")

Also check out the runnable example which is a slight extension of the above.

4 Chapter 1. Code teaser

https://github.com/softwaremill/tapir/blob/master/playground/src/main/scala/tapir/example/BooksExample.scala

CHAPTER 2

Contents

2.1 Quickstart

To use tapir, add the following dependency to your project:

"com.softwaremill.tapir" %% "tapir-core" % "0.3"

This will import only the core classes. To generate a server or a client, you will need to add further dependencies.

Most of tapir functionalities use package objects which provide builder and extensions methods, hence it’s easiest to
work with tapir if you import whole packages, e.g.:

import tapir._

If you don’t have it already, you’ll also need partial unification enabled in the compiler (alternatively, you’ll need to
manually provide type arguments in some cases). In sbt, this is:

scalacOptions += "-Ypartial-unification"

Finally, type:

endpoint.

and see where auto-complete gets you!

2.1.1 Example usages

To see an example project using Tapir, check out this Todo-Backend using tapir and http4s.

Also check out the simple runnable example which is available in the repository.

5

https://github.com/hejfelix/tapir-http4s-todo-mvc
https://github.com/softwaremill/tapir/blob/master/playground/src/main/scala/tapir/example/BooksExample.scala

tapir documentation, Release 0.0.11

2.2 Goals of the project

• programmer-friendly, human-comprehensible types, that you are not afraid to write down

• (also inferencable by IntelliJ)

• discoverable API through standard auto-complete

• separate “business logic” from endpoint definition & documentation

• as simple as possible to generate a server, client & docs

• based purely on case class-based, immutable and reusable data structures

• first-class OpenAPI support. Provide as much or as little detail as needed.

• reasonably type safe: only, and as much types to safely generate the server/client/docs

2.2.1 Similar projects

There’s a number of similar projects from which tapir draws inspiration:

• endpoints

• typedapi

• rho

• typed-schema

• guardrail

2.3 Anatomy an endpoint

An endpoint is represented as a value of type Endpoint[I, E, O, S], where:

• I is the type of the input parameters

• E is the type of the error-output parameters

• O is the type of the output parameters

• S is the type of streams that are used by the endpoint’s inputs/outputs

Input/output parameters (I, E and O) can be:

• of type Unit, when there’s no input/ouput of the given type

• a single type

• a tuple of types

Hence, an empty, initial endpoint (tapir.endpoint), with no inputs and no outputs, from which all other endpoints
are derived has the type:

val endpoint: Endpoint[Unit, Unit, Unit, Nothing] = ...

An endpoint which accepts two parameters of types UUID and Int, upon error returns a String, and on normal
completion returns a User, would have the type:

Endpoint[(UUID, Int), String, User, Nothing]

6 Chapter 2. Contents

https://github.com/julienrf/endpoints
https://github.com/pheymann/typedapi
https://github.com/http4s/rho
https://github.com/TinkoffCreditSystems/typed-schema
https://github.com/twilio/guardrail

tapir documentation, Release 0.0.11

You can think of an endpoint as a function, which takes input parameters of type I and returns a result of type
Either[E, O], where inputs or outputs can contain streaming bodies of type S.

2.3.1 Defining an endpoint

The description of an endpoint is an immutable case class, which includes a number of methods:

• the name, description, etc. methods allow modifying the endpoint information, which will then be in-
cluded in the endpoint documentation

• the get, post etc. methods specify the HTTP method which the endpoint should support

• the in, errorOut and out methods allow adding a new input/output parameter

• mapIn, mapInTo, . . . methods allow mapping the current input/output parameters to another value or to a
case class

An important note on mapping: in tapir, all mappings are bi-directional. That’s because each mapping can be used to
generate a server or a client, as well as in many cases can be used both for input and for output.

2.3.2 Next

Read on about describing endpoint inputs/outputs.

2.4 Defining endpoint’s input/output

An input is described by an instance of the EndpointInput trait, and an output by an instance of the EndpointIO
trait, as all outputs can also be used as inputs. Each input or output can yield/accept a value. For example,
query[Int]("age"): EndpointInput[Int] describes an input, which is the age query parameter, and
which should be mapped (using the string-to-integer codec) as an Int.

The tapir package contains a number of convenience methods to define an input or an output for an endpoint. These
are:

• path[T], which captures a path segment as an input parameter of type T

• any string, which will be implicitly converted to a constant path segment. Path segments can be combined with
the / method, and don’t map to any values (have type EndpointInput[Unit])

• paths, which maps to the whole remaining path as a Seq[String]

• query[T](name) captures a query parameter with the given name

• queryParams captures all query parameters, represented as MultiQueryParams

• header[T](name) captures a header with the given name

• headers captures all headers, represented as Seq[(String, String)]

• cookie[T](name) captures a cookie from the Cookie header with the given name

• cookies captures cookies from the Cookie header and represents them as List[Cookie]

• setCookie(name) captures the value & metadata of the a Set-Cookie header with a matching name

• setCookies captures cookies from the Set-Cookie header and represents them as List[SetCookie]

• body[T, M], stringBody, plainBody[T], jsonBody[T], binaryBody[T], formBody[T],
multipartBody[T] captures the body

2.4. Defining endpoint’s input/output 7

ios.html
codecs.html

tapir documentation, Release 0.0.11

• streamBody[S] captures the body as a stream: only a client/server interpreter supporting streams of type S
can be used with such an endpoint

For outputs, you can use the header, setCookies and body family of methods.

2.4.1 Combining inputs and outputs

Endpoint inputs/outputs can be combined in two ways. However they are combined, the values they represent always
accumulate into tuples of values.

First, descriptions can be combined using the .andmethod. Such a combination results in an input/output represented
as a tuple of the given types, can be stored as a value and re-used in multiple endpoints. As all other values in tapir,
endpoint input/output descriptions are immutable. For example, an input specifying two query parameters, start
(mandatory) and limit (optional) can be written down as:

val paging: EndpointInput[(UUID, Option[Int])] =
query[UUID]("start").and(query[Option[Int]]("limit"))

// we can now use the value in multiple endpoints, e.g.:
val listUsersEndpoint: Endpoint[(UUID, Option[Int]), Unit, List[User], Nothing] =

endpoint.in("user" / "list").in(paging).out(jsonBody[List[User]])

Second, inputs can be combined by calling the in, out and errorOutmethods on Endpointmultiple times. Each
time such a method is invoked, it extends the list of inputs/outputs. This can be useful to separate different groups of
parameters, but also to define template-endpoints, which can then be further specialized. For example, we can define
a base endpoint for our API, where all paths always start with /api/v1.0, and errors are always returned as a json:

val baseEndpoint: Endpoint[Unit, ErrorInfo, Unit, Nothing] =
endpoint.in("api" / "v1.0").errorOut(jsonBody[ErrorInfo])

Thanks to the fact that inputs/outputs accumulate, we can use the base endpoint to define more inputs, for example:

val statusEndpoint: Endpoint[Unit, ErrorInfo, Status, Nothing] =
baseEndpoint.in("status").out(jsonBody[Status])

The above endpoint will correspond to the api/v1.0/status path.

2.4.2 Mapping over input values

Inputs/outputs can also be mapped over. As noted before, all mappings are bi-directional, so that they can be used
both when interpreting an endpoint as a server, and as a client.

There’s a couple of ways to map over an input/output. First, there’s the map[II](f: I => II)(g: II =>
I) method, which accepts functions which provide the mapping in both directions. For example:

case class Paging(from: UUID, limit: Option[Int])

val paging: EndpointInput[Paging] =
query[UUID]("start").and(query[Option[Int]]("limit"))
.map((from, limit) => Paging(from, limit))(paging => (paging.from, paging.limit))

Creating a mapping between a tuple and a case class is a common operation, hence there’s also a
mapTo(CaseClassCompanion) method, which automatically provides the mapping functions:

8 Chapter 2. Contents

tapir documentation, Release 0.0.11

case class Paging(from: UUID, limit: Option[Int])

val paging: EndpointInput[Paging] =
query[UUID]("start").and(query[Option[Int]]("limit"))
.mapTo(Paging)

Mapping methods can also be called on an endpoint (which is useful if inputs/outputs are accumulated, for example).
The Endpoint.mapIn, Endpoint.mapInTo etc. have the same signatures are the ones above.

2.4.3 Path matching

By default (as with all other types of inputs), if no path input/path segments are defined, any path will match.

If any path input/path segment is defined, the path must match exactly - any remaining path segments will cause the
endpoint not to match the request. For example, endpoint.path("api") will match /api, /api/, but won’t
match /, /api/users.

To match only the root path, use an empty string: endpoint.path("") will match http://server.com/ and
http://server.com.

2.4.4 Next

Read on about codecs.

2.5 Codecs

A codec specifies how to map from and to raw values that are sent over the network. Raw values, which are natively
supported by client/server interpreters, include Strings, byte arrays, Files and multiparts.

There are built-in codecs for most common types such as String, Int etc. Codecs are usually defined as implicit
values and resolved implicitly when they are referenced.

For example, a query[Int]("quantity") specifies an input parameter which corresponds to the quantity
query parameter and will be mapped as an Int. There’s an implicit Codec[Int] value that is referenced by the
query method (which is defined in the tapir package).

In a server setting, if the value cannot be parsed as an int, a decoding failure is reported, and the endpoint won’t match
the request, or a 400 Bad Request response is returned (depending on configuration).

2.5.1 Optional and multiple parameters

Some inputs/outputs allow optional, or multiple parameters:

• path segments are always required

• query and header values can be optional or multiple (repeated query parameters/headers)

• bodies can be optional, but not multiple

In general, optional parameters are represented as Option values, and multiple parameters as List values. For ex-
ample, header[Option[String]]("X-Auth-Token") describes an optional header. An input described as
query[List[String]]("color") allows multiple occurences of the color query parameter, with all values
gathered into a list.

2.5. Codecs 9

codecs.html

tapir documentation, Release 0.0.11

Implementation note

To support optional and multiple parameters, inputs/outputs don’t require implicit Codec values (which represent
only mandatory values), but CodecForOptional and CodecForMany implicit values.

A CodecForOptional can be used in a context which allows optional values. Given a Codec[T], instances of
both CodecForOptional[T] and CodecForOptional[Option[T]] will be generated (that’s also the way
to add support for custom optional types). The first one will require a value, and report a decoding failure if a value is
missing. The second will properly map to an Option, depending if the value is present or not.

2.5.2 Schemas

A codec also contains the schema of the mapped type. This schema information is used when generating documenta-
tion. For primitive types, the schema values are built-in, and include values such as Schema.SString, Schema.
SArray, Schema.SBinary etc.

For complex types, it is possible to define the schema by hand and apply it to a codec (using the codec.schema
method), however usually the schema is looked up by codecs by requiring an implicit value of type SchemaFor[T].
A schema-for value contains a single schema: Schema field.

SchemaFor[T] values are automatically derived for case classes using Magnolia. It is possible to configure the
automatic derivation to use snake-case, kebab-case or a custom field naming policy, by providing an implicit tapir.
generic.Configuration value:

implicit val customConfiguration: Configuration =
Configuration.defaults.snakeCaseTransformation

2.5.3 Media types

Codecs carry an additional type parameter, which specifies the media type. Some built-in media types include text/
plain, application/json and multipart/form-data. Custom media types can be added by creating an
implementation of the tapir.MediaType trait.

Thanks to codec being parametrised by media types, it is possible to have a Codec[MyCaseClass, TextPlain,
_] which specifies how to serialize a case class to plain text, and a different Codec[MyCaseClass, Json, _],
which specifies how to serialize a case class to json. Both can be implicitly available without implicit resolution
conflicts.

Different media types can be used in different contexts. When defining a path, query or header parameter, only a codec
with the TextPlain media type can be used. However, for bodies, any media types is allowed. For example, the
input/output described by jsonBody[T] requires a json codec.

2.5.4 Custom types

Support for custom types can be added by writing a codec from scratch, or mapping over an existing codec. However,
custom types can also be supported by mapping over inputs/outputs, not codecs. When to use one and the other?

In general, codecs should be used when translating between raw values and “application-primitives”. Codecs also
allow the decoding process to result in an error, or to complete successfully. For example, to support a custom id type:

def decode(s: String): DecodeResult[MyId] = MyId.parse(s) match {
case Success(v) => DecodeResult.Value(v)
case Failure(f) => DecodeResult.Error(s, f)

}

(continues on next page)

10 Chapter 2. Contents

https://propensive.com/opensource/magnolia/

tapir documentation, Release 0.0.11

(continued from previous page)

def encode(id: MyId): String = id.toString

implicit val myIdCodec: Codec[MyId] = Codec.stringPlainCodecUtf8.
→˓mapDecode(decode)(encode)

Additionally, if a type is supported by a codec, it can be used in multiple contexts, such as query parameters, headers,
bodies, etc. Mapped inputs by construction have a fixed context.

On the other hand, when building composite types out of many values, or when an isomorphic representation of a type
is needed, but only for a single input/output/endpoint, mapping over an input/output is the simpler solution. Note that
while codecs can report errors during decoding, mapping over inputs/outputs doesn’t have this possibility.

2.5.5 Validation

While codecs support reporting decoding failures, this is not meant as a validation solution, as it only works on single
values, while validation often involves multiple combined values.

Decoding failures should be reported when the input is in an incorrect low-level format, when parsing a “raw value”
fails. In other words, decoding failures should be reported for format failures, not business validation errors.

Any validation should be done as part of the “business logic” methods provided to the server interpreters. In case val-
idation fails, the result can be an error, which is one of the mappings defined in an endpoint (the E in Endpoint[I,
E, O, S]).

2.5.6 Next

Read on about json support.

2.6 Working with JSON

Json values are supported through codecs which encode/decode values to json strings. However, third-party libraries
are needed for actual json parsing/printing. Currently, Circe is supported. To use, add the following dependency to
your project:

"com.softwaremill.tapir" %% "tapir-json-circe" % "0.3"

Next, import the package (or extend the JsonCirce trait, see MyTapir):

import tapir.json.circe._

This will bring into scope Codecs which, given an in-scope circe Encoder/Decoder, will create a codec using the
json media type. Circe includes a couple of approaches to generating encoders/decoders (manual, semi-auto and auto),
so you may choose whatever suits you.

For example, to automatically generate a JSON codec for a case class:

import tapir._
import tapir.json.circe._
import io.circe.generic.auto._

case class Book(author: String, title: String, year: Int)

val bookInput: EndpointIO[Book] = jsonBody[Book]

2.6. Working with JSON 11

json.html
https://github.com/circe/circe
../mytapir.html

tapir documentation, Release 0.0.11

To add support for other JSON libraries, see the sources for the Circe codec (which is just a couple of lines of code).

2.6.1 Next

Read on about working with forms.

2.7 Form support

2.7.1 URL-encoded forms

An URL-encoded form input/output can be specified in two ways. First, it is possible to map all form fields as a
Seq[(String, String)], or Map[String, String] (which is more convenient if fields can’t have multiple
values):

formBody[Seq[(String, String)]]: EndpointIO[Seq[(String, String)],
MediaType.XWwwFormUrlencoded, _]

formBody[Map[String, String]]: EndpointIO[Map[String, String],
MediaType.XWwwFormUrlencoded, _]

Second, form data can be mapped to a case class. The codec for the case class is generated using a macro at compile-
time. The fields of the case class should have types, for which there is a plain text codec. For example:

case class RegistrationForm(name: String, age: Int, news: Boolean, city:
→˓Option[String])

formBody[RegistrationForm]

Each form-field is named the same as the case-class-field. The names can be transformed to snake or kebab case by
providing an implicit tapir.generic.Configuraton.

2.7.2 Multipart forms

Similarly as above, multipart form input/outputs can be specified in two ways. To map to all parts of a multipart body,
use:

multipartBody[Seq[AnyPart]]: EndpointIO[Seq[AnyPart], MediaType.MultipartFormData, _]

where type AnyPart = Part[_]. Part is a case class containing the name of the part, disposition parameters,
headers, and the body. The bodies will be mappes as byte arrays (Array[Byte]), unless a custom multipart codec
is defined using the Codec.multipartCodec method.

As with URL-encoded forms, multipart bodies can be mapped directly to case classes, however without the restriction
on codecs for individual fields. Given a field of type T, first a plain text codec is looked up, and if one isn’t found, any
codec for any media type (e.g. JSON) is searched for.

Each part is named the same as the case-class-field. The names can be transformed to snake or kebab case by providing
an implicit tapir.generic.Configuraton.

Additionally, the case class to which the multipart body is mapped can contain both normal fields, and fields of type
Part[T]. This is useful, if part metadata (e.g. the filename) is relevant.

For example:

12 Chapter 2. Contents

https://github.com/softwaremill/tapir/blob/master/json/circe/src/main/scala/tapir/json/circe/JsonCirce.scala
forms.html

tapir documentation, Release 0.0.11

case class RegistrationForm(userData: User, photo: Part[File], news: Boolean)

multipartBody[RegistrationForm]

2.7.3 Next

Read on about authentication.

2.8 Authentication

Inputs which carry authentication data wrap another input can be marked as such by declaring them using members
of the auth object. Apart from predefined codecs for some authentication methods, such inputs will be treated
differently] when generating documentation. Otherwise, they behave as normal inputs which map to the the given
type.

Currently, the following authentication inputs are available (assuming import tapir._):

• auth.apiKey(anotherInput): wraps any other input and designates it as an api key. The input is typi-
cally a header, cookie or a query parameter

• auth.basic: EndpointInput[UsernamePassword]: maps to the base64-encoded user-
name/password pair in the Authorization header

• auth.bearer: EndpointInput[String]: maps to Bearer [token] in the Authorization
header

Multiple authentication inputs indicate that all of the given authentication values should be provided. Specifying
alternative authentication methods (where only one value out of many needs to be provided) is currently not supported.

When interpreting a route as a server, it is useful to define the authentication input first, to be able to share the
authentication logic among multiple endpoints easily. See common server options for more details.

2.9 Running as an akka-http server

To expose an endpoint as an akka-http server, first add the following dependency:

"com.softwaremill.tapir" %% "tapir-akka-http-server" % "0.3"

and import the package:

import tapir.server.akkahttp._

This adds two extension methods to the Endpoint type: toDirective and toRoute. Both require the logic of
the endpoint to be given as a function of type:

[I as function arguments] => Future[Either[E, O]]

Note that the function doesn’t take the tuple I directly as input, but instead this is converted to a function of the
appropriate arity. For example:

2.8. Authentication 13

auth.html
../server/common.html
https://doc.akka.io/docs/akka-http/current/

tapir documentation, Release 0.0.11

import tapir._
import tapir.server.akkahttp._
import scala.concurrent.Future
import akka.http.scaladsl.server.Route

def countCharacters(s: String): Future[Either[Unit, Int]] =
Future.successful(Right[Unit, Int](s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Nothing] =
endpoint.in(stringBody).out(plainBody[Int])

val countCharactersRoute: Route = countCharactersEndpoint.toRoute(countCharacters _)

The created Route/Directive can then be further combined with other akka-http directives, for example nested
within other routes. The Tapir-generated Route/Directive captures from the request only what is described by
the endpoint.

It’s completely feasible that some part of the input is read using akka-http directives, and the rest using tapir endpoint
descriptions; or, that the tapir-generated route is wrapped in e.g. a metrics route. Moreover, “edge-case endpoints”,
which require some special logic not expressible using tapir, can be always implemented directly using akka-http. For
example:

val myRoute: Route = metricsDirective {
securityDirective { user =>
tapirEndpoint.toRoute(input => /* here we can use both `user` and `input` values

→˓*/)
}

}

2.9.1 Streaming

The akka-http interpreter accepts streaming bodies of type Source[ByteString, Any], which can be used
both for sending response bodies and reading request bodies. Usage: streamBody[Source[ByteString,
Any]](schema, mediaType).

2.9.2 Configuration

The interpreter can be configured by providing an implicit AkkaHttpServerOptions value and status mappers,
see common server configuration for details.

2.10 Running as an http4s server

To expose an endpoint as an http4s server, first add the following dependency:

"com.softwaremill.tapir" %% "tapir-akka-http4s" % "0.3"

and import the package:

import tapir.server.http4s._

This adds an extension method to the Endpoint type: toRoutes. It requires the logic of the endpoint to be given
as a function of type:

14 Chapter 2. Contents

common.html
https://http4s.org

tapir documentation, Release 0.0.11

[I as function arguments] => F[Either[E, O]]

where F[_] is the chosen effect type. Note that the function doesn’t take the tuple I directly as input, but instead this
is converted to a function of the appropriate arity. For example:

import tapir._
import tapir.server.http4s._
import cats.effect.IO
import org.http4s.HttpRoutes
import cats.effect.ContextShift

// will probably come from somewhere else
implicit val cs: ContextShift[IO] =

IO.contextShift(scala.concurrent.ExecutionContext.global)

def countCharacters(s: String): IO[Either[Unit, Int]] =
IO.pure(Right[Unit, Int](s.length))

val countCharactersEndpoint: Endpoint[String, Unit, Int, Nothing] =
endpoint.in(stringBody).out(plainBody[Int])

val countCharactersRoutes: HttpRoutes[IO] =
countCharactersEndpoint.toRoutes(countCharacters _)

The created HttpRoutes are the usual http4s Kleisli-based transformation of a Request to a Response,
and can be further composed using http4s middlewares or request-transforming functions. The tapir-generated
HttpRoutes captures from the request only what is described by the endpoint.

It’s completely feasible that some part of the input is read using a http4s wrapper function, which is then composed with
the tapir endpoint descriptions. Moreover, “edge-case endpoints”, which require some special logic not expressible
using tapir, can be always implemented directly using http4s.

2.10.1 Streaming

The http4s interpreter accepts streaming bodies of type Stream[F, Byte], which can be used both for
sending response bodies and reading request bodies. Usage: streamBody[Stream[F, Byte]](schema,
mediaType).

2.10.2 Configuration

The interpreter can be configured by providing an implicit Http4sServerOptions value and status mappers, see
common server configuration for details.

The http4s options also includes configuration for the blocking execution context to use, and the io chunk size.

2.11 Common server options

2.11.1 Status codes

By default, successful responses are returned with the 200 OK status code, and errors with 400 Bad Request.
However, this can be customised when interpreting an endpoint as a directive/route, by providing implicit values of
type StatusMapper[T] = T => StatusCode, where type StatusCode = Int.

2.11. Common server options 15

common.html

tapir documentation, Release 0.0.11

This can be especially useful for error responses, in which case having an Endpoint[I, E, O, S], you’d need
to provide an implicit StatusMapper[E].

2.11.2 Server options

Each interpreter accepts an implicit options value, which contains configuration values for:

• how to create a file (when receiving a response that is mapped to a file, or when reading a file-mapped multipart
part)

• how to handle decode failures

Handling decode failures

Quite often user input will be malformed and decoding will fail. Should the request be completed with a 400 Bad
Request response, or should the request be forwarded to another endpoint? By default, tapir follows OpenAPI
conventions, that an endpoint is uniquely identified by the method and served path. That’s why:

• an “endpoint doesn’t match” result is returned if the request method or path doesn’t match. The http library
should attempt to serve this request with the next endpoint.

• otherwise, we assume that this is the correct endpoint to serve the request, but the parameters are somehow
malformed. A 400 Bad Request response is returned if a query parameter, header or body is missing /
decoding fails, or if the decoding a path capture fails with an error (but not a “missing” decode result).

This can be customised by providing an implicit instance of tapir.server.DecodeFailureHandler, which
basing on the request, failing input and failure description can decide, whether to return a “no match”, an endpoint-
specific error value, or a specific response.

Only the first failure is passed to the DecodeFailureHandler. Inputs are decoded in the following order: method,
path, query, header, body.

2.11.3 Extracting common route logic

Quite often, especially for authentication, some part of the route logic is shared among multiple endpoints. How-
ever, these functions don’t compose in a straightforward way, as the results can both contain errors (represented as
Eithers), and are wrapped in a container. Suppose you have the following methods:

type AuthToken = String

def authFn(token: AuthToken): Future[Either[ErrorInfo, User]]
def logicFn(user: User, data: String, limit: Int): Future[Either[ErrorInfo, Result]]

which you’d like to apply to an endpoint with type:

val myEndpoint: Endpoint[(AuthToken, String, Int), ErrorInfo, Result, Nothing] = ...

To avoid composing these functions by hand, tapir defines a helper extension method, composeRight. If the first
function returns an error, that error is propagated to the final result; otherwise, the result is passed as input to the
second function.

This extension method is defined in the same traits as the route interpreters, both for Future (in the akka-http
interpreter) and for an arbitrary monad (in the http4s interpreter), so importing the package is sufficient to use it:

import tapir.server.akkahttp._
val r: Route = myEndpoint.toRoute((authFn _).composeRight(logicFn _))

16 Chapter 2. Contents

../endpoint/auth.html

tapir documentation, Release 0.0.11

2.12 Using as an sttp client

Add the dependency:

"com.softwaremill.tapir" %% "tapir-sttp-client" % "0.3"

To make requests using an endpoint definition using sttp, import:

import tapir.client.sttp._

This adds the toRequest(Uri) extension method to any Endpoint instance which, given the given base URI
returns a function:

[I as function arguments] => Request[Either[E, O], Nothing]

After providing the input parameters, the result is a description of the request to be made, which can be further
customised and sent using any sttp backend.

See the runnable example for example usage.

2.13 Generating OpenAPI documentation

To use, add the following dependencies:

"com.softwaremill.tapir" %% "tapir-openapi-docs" % "0.3"
"com.softwaremill.tapir" %% "tapir-openapi-circe-yaml" % "0.3"

Tapir contains a case class-based model of the openapi data structures in the openapi/openapi-model subproject
(the model is independent from all other tapir modules and can be used stand-alone).

An endpoint can be converted to an instance of the model by importing the tapir.docs.openapi._ package and
calling the provided extension method:

import tapir.openapi.OpenAPI
import tapir.docs.openapi._

val docs: OpenAPI = booksListing.toOpenAPI("My Bookshop", "1.0")

Such a model can then be refined, by adding details which are not auto-generated. Working with a deeply nested case
class structure such as the OpenAPI one can be made easier by using a lens library, e.g. Quicklens.

The openapi case classes can then be serialised, either to JSON or YAML using Circe:

import tapir.openapi.circe.yaml._

println(docs.toYaml)

2.13.1 Exposing OpenAPI documentation

Exposing the OpenAPI documentation can be very application-specific. For example, to expose the docs using the
Swagger UI and akka-http:

• add libraryDependencies += "org.webjars" % "swagger-ui" % "3.20.9" to build.
sbt (or newer)

2.12. Using as an sttp client 17

https://github.com/softwaremill/sttp
https://github.com/softwaremill/tapir/blob/master/playground/src/main/scala/tapir/example/BooksExample.scala
https://github.com/adamw/quicklens
https://circe.github.io/circe/

tapir documentation, Release 0.0.11

• generate the yaml content to serve as a String using tapir:

import tapir.docs.openapi._
import tapir.openapi.circe.yaml._

val docsAsYaml: String = myEndpoints.toOpenAPI("My App", "1.0").toYaml

• add the following routes to your server:

val SwaggerYml = "swagger.yml"

private val redirectToIndex: Route =
redirect(s"/swagger/index.html?url=/swagger/$SwaggerYml", StatusCodes.

→˓PermanentRedirect)

val routes: Route =
path("swagger") {
redirectToIndex

} ~
pathPrefix("swagger") {

path("") { // this is for trailing slash
redirectToIndex

} ~
path(SwaggerYml) {
complete(yml)

} ~
getFromResourceDirectory("META-INF/resources/webjars/swagger-ui/3.20.0/")

}

2.14 Creating your own Tapir

Tapir uses a number of packages which contain either the data classes for describing endpoints or interpreters of this
data (turning endpoints into a server or a client). Importing these packages every time you want to use Tapir may be
tedious, that’s why each package object inherits all of its functionality from a trait.

Hence, it is possible to create your own object which combines all of the required functionalities and provides a
single-import whenever you want to use tapir. For example:

object MyTapir extends Tapir
with AkkaHttpServer
with SttpClient
with CirceJson
with OpenAPICirceYaml

Then, a single import MyTapir._ and all Tapir data types and extensions methods will be in scope!

2.15 Contributing

Tapir is an early stage project. Everything might change. All suggestions welcome :)

See the list of issues and pick one! Or report your own.

If you are having doubts on the why or how something works, don’t hesitate to ask a question on gitter or via github.
This probably means that the documentation, scaladocs or code is unclear and can be improved for the benefit of all.

18 Chapter 2. Contents

https://github.com/softwaremill/tapir/issues
https://gitter.im/softwaremill/tapir

tapir documentation, Release 0.0.11

2.15.1 Acknowledgments

Tuple-concatenating code is copied from akka-http

Generic derivation configuration is copied from circe

2.15. Contributing 19

https://github.com/akka/akka-http/blob/master/akka-http/src/main/scala/akka/http/scaladsl/server/util/TupleOps.scala
https://github.com/circe/circe/blob/master/modules/generic-extras/src/main/scala/io/circe/generic/extras/Configuration.scala

	Code teaser
	Contents

